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1Variables and relations

A lot of mathematics deals to some extent with relations between di�erent
quantities or objects. E.g., if we look at a circle, the area and the radius
are related. If we take a taxi, there’s a relationship between the length
of the fare and its price. Relationships such as these may be expressed
mathematically using formulas and equations.

When we use a formula to describe a relationship, we use variables to
describe the di�erent, related quantities.

1.1 Variables

A variable is—as the name implies—a quantity which varies.1 So, it is a 1A quantity which does not vary but has a
�xed value is called a constant.quantity with no �xed value. A variabled in mathematics is always denoted

by one letter,2 e.g. x . 2Here, it is important to note that in mathe-
matics, we distinguish between upper and
lower case letters—i.e. x and X er di�erent
variables.

We may determine the area of a circle using the formula

A = π ⋅ r
2
, (1.1)

where A denotes the area, and r the radius. In this example, both A and r

are variables, i.e. A and r have no �xed value.3 But a relationship exists 3The number π, however, does have a �xed
value, so it is not a variable, but a constant.between the values of the two variables—if we look at a circle with a certain

radius, we also have a certain area. This relationship is what the formula
describes.

When two variables are related, changing the value of one of the variables
will lead to a change in the other variable. E.g. if we increase the radius
of a circle, we also increase the area. In the formula (1.1), we call r the
independent variable while A is called the dependent variable, because its
value depends on the value of r .

In principle, we might choose to call A the independent variable, and r

the dependent—because if we change the area of a circle, the radius also
changes. The formula (1.1) may then be rewritten to look like this:

r =

√

A

π

.

But choosing the radius as the independent variable seems the more natural
choice, because when we draw circles we use the radius as reference—not
the area.

5



6 Variables and relations

In many cases, the independent variable is chosen to be the one that makes
the most sense. Other examples might be:

• When we calculate the air pressure p at di�erent altitudes ℎ on a
mountain, ℎ is the independent variable. We can change the altitude
by walking up or down the mountain, and the air pressure then
changes according to our position. However, it would seem counter-
intuitive to say that we change the air pressure, which then leads to
changes in our altitude.

• The population N in a city typically changes with the time t (mea-
sured in years). Here t is the independent variable. This is because
the population changes when time passes—and not the changing
population whichs a�ect the passing of time.

1.2 Representation

Relationships between variables may be described in a number of ways.
We might represent the relationship by

• a table, where related values of two (or more) variables are shown
side by side,

• a model, which is a formula or an equation describing the relationship,
or

• a graph, which shows how the value of one variable depends on
another.

Here, we will take a closer look at tables and models through a few examples.
The graphical representation is described in a later section.

Example 1.1 A connection to a domestic gas supply costs DKK 937.50
annually, plus DKK 7.26 per m3 of gas used.

We can describe this relationship between volume and price in a table
showing the price for certain volumes of gas, see table 1.1.

Table 1.1: The relationship between gas
consumption and the price.

Volume (m3) Price (DKK)

10 1010.10
20 1082.70
30 1155.30
40 1227.90
50 1300.50
60 1373.10

But we can also express the relationship as a mathematical model:

P = 7.26 ⋅ V + 937.50 ,

where P is the annual price, and V is the consumed volume (in m3) of gas.

In principle, a table only gives us information about a limited amount of
data, whereas a model makes it possible to calculate any number of related
values of the variables. If we look at the numbers in table 1.1, we can only
know the price when the consumption has a certain value. The model
enables us to calculate the price for any possible volume of gas.

Because a table only contains a limited amount of data, it is not always
possible to translate a table directly into a model. If we have a theoretical
description of the relationship (price per m3 etc., as given in the example
above), we may write down a model and compare it to the table.
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If we do not know the theoretical relationship, we would have to analyse
the data to �nd a model, which �ts. Di�erent methods exist for this purpose,
one of them is described in chapter 3.

Example 1.2 In an experiment, we let a stone drop from a great height
and measure how far it has fallen after a given time. The measurements
are listed in table 1.2.

Table 1.2: The relationship between time t

and distance s for a falling stone.

t (s) s (m)

0 0
1 4.91
2 19.64
3 44.19
4 78.56

A mathematical analysis of these data shows that the relationship may be
described by the model

s = 4.91 ⋅ t
2
,

where t is the time (in seconds) and s is the distance fallen (in metres).4
4This relationship was determined experi-
mentally by Galileo Galilei in the late 16th
century.[3]Notice that in the model in example 1.2, time is the independent variable

while the distance is the dependent. This is because the stone travels as
time passes—we cannot move the stone back and forth to change time.

1.3 Graphical Representation

If two variables are related, it is possible to draw a picture illustrating their
relationship. Such a picture is called a graph, and it is drawn in a coordinate
system.

Coordinate Systems

A coordinate system is a sort of grid which we lay across the plane. It is
used to describe the position of points.

We start by drawing two perpendicular axes. The �rst axis (often called
the x-axis) from left to right and the second axis (often called the y-axis)
pointing upwards. The two axes are actually number lines, which intersect
at their respective 0’s, see �gure 1.3. The intersection between the two
axes is called the origin of the coordinate system.

If we draw a line from a point in the plane perpendicular to the �rst axis, the
line intersects this axis at a number. We call this number the �rst coordinate
(or x-coordinate) of the point. Similarly, we de�ne the second coordinate
(or y-coordinate) to be the number we get when a line perpendicular to
the second axis intersects this axis. Any point can be described by its
coordinates, i.e. a point is a pair of coordinates (x, y), which tell us, where
the point is placed in the coordinate system (see �gure 1.3). The origin has
coordinates (0, 0).

−3 1 2 4

−2

1

2

4

A(2, 4)

B(−3, 2)

C(4, −2)

(1)

(2)

Figure 1.3: The three points A(2, 4),
B(−3, 2) and C(4, −2) drawn in a coordinate
system.

From Tables to Graphs

A table can be drawn in a coordinate system as a series of points by letting
the �rst coordinate be the independent variable, and the second coordinate
be the corresponding value of the dependent variable.

Example 1.3 The tables from example 1.1 and 1.2 show the relationship
between gas consumption and price, and between time and distance. The
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10 20 30 40 50 60

200

400

600

800

1 000

1 200

V (m3)

P (kr.)

(a) Consumption and price.

1 2 3 4

20

40

60

80

t (s)

s (m)

(b) Time and distance.

Figure 1.4: Data from table 1.1 and 1.2
shown in separate coordinate systems.
Both suggest a simple relationship between
the variables—the points in the �rst coordi-
nate system seem to fall on a straight line,
whereas the points in the second seem to
fall on a simple curve.

numbers in table 1.1 translate into a series of points:

(10, 1010.10) , (20, 1082.70) , (30, 1155.30) ,

(40, 1227.90) , (50, 1300.50) , (60, 1373.10) ,

where the �rst coordinate is the consumption of gas, and the second coor-
dinate is the price. We can then draw these points in a coordinate system,
see �gure 1.4(a).

In the same way, we can translate the data from table 1.2 to coordinates
and draw the points in a coordinate system. This gives us �gure 1.4(b).

In the �rst coordinate system (�gure 1.4(a)), the points appear to form a
straight line. This is not the case in the second coordinate system (�g-
ure 1.4(b)). However, the points appear to form a simple curve. In both
cases, we might therefore assume that both cases may be described using a
simple model.

The models behind the illustrations in �gure 1.4 are shown in example 1.1
and 1.2. The two models may be described by their graphs, see �gure 1.5.
The models are the two equations

P = 7.26 ⋅ V + 937.50 and s = 4.91 ⋅ t
2
.

10 20 30 40 50 60

200

400

600

800

1 000

1 200

P = 7, 26 ⋅ V + 937, 50

V (m3)

P (kr.)

(a) Consumption and price.

1 2 3 4

20

40

60

80

s = 4, 91 ⋅ t
2

t (s)

s (m)

(b) Time and distance.

Figure 1.5: Graphs of the two models from
example 1.1 and 1.2.
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The graphs of these two models consist of all of those points, whose �rst
and second coordinates �t the corresponding equation.

So, a graph is a visual representation of an equation containing two vari-
ables. In principle, the graph and the equation contain the same informa-
tion.

Example 1.4 The equation y = 5 − x
2 describes a curve in a coordinate

system, see �gure 1.6. In the �gure, we see that the point (1, 4) lies on the
graph. We can also see this from the equation, because if we insert x = 1,
we get

y = 5 − 1
2
= 4 .

We can also use the graph to solve the equation 5−x2 = 1. This corresponds
to letting y = 1 and �nding the corresponding values of x . As the �gure
shows, there are two points on the graph where y = 1, i.e.

5 − x
2
= 1 ⇔ x = −2 ∨ x = 2 .

We might also have found these two solutions by solving the equation
algebraically.

1

1(−2; 1)

(1; 4)

(2; 1)

(1)

(2)

Figure 1.6: The graph of y = 5 − x2.
General Curves

In the previous sections, we have only looked at equations where the
independent variable is isolated on the left hand side of the equation:

P = 7.26 ⋅ V + 937.50 , s = 4.91 ⋅ t
2 and y = 5 − x

2
.

But we might imagine equations, where it is not intuitive which variable is
the independent and which is the dependent, e.g.

x ⋅ y = 2 or y
2
− x = 3 .

These equations can also be translated into curves in a coordinate system.
The curves will then consist of the points that �t these equations.

Example 1.5 The points on the curve x ⋅ y = 2 are those points where the
product of the �rst and second coordinates is 2. E.g.

(1, 2) , (−2, −1) and (4, 0.5) .

If we draw this curve, we get the picture in �gure 1.7.

1

1

(1)

(2)

Figure 1.7: The curve with equation x ⋅y =

2.

There are no points on this curve with �rst coordinate 0. This is because
letting x = 0 yields the equation

0 ⋅ y = 2 ,

which has no solutions. For the same reason, there are no points on this
curve with second coordinate 0.

Example 1.6 The curve with equation y
2
− x = 3 is shown in �gure 1.8.

1

1

(1)

(2)

Figure 1.8: The curve with equation y
2
−

x = 3.

This curve is not a graph. On this curve, we can �nd di�erent points that
have the same �rst coordinate, e.g. (1, 2) and (1, −2). On a graph, �rst
coordinates must correspond to exactly one second coordinate.



10 Variables and relations

1.4 Functions

A function in mathematics may be seen as a form of arithmerical operation.
We may describe a function as a sort of machine which for any given input
yields a certain output—so, a function is a relation between numbers.

Figure 1.9 shows how the function “square the number and subtract it from
5” behaves. The output for 4 di�erent numbers are shown. As we can see,
di�erent numbers may yield the same output—but it is not permitted to
have di�erent outputs from the same input.

Input Output

2 1

−2

0 5

6 −31

Figure 1.9: The function “square the num-
ber and subtract it from 5”.

Because it is impractical to describe functions in this way, a mathematical
notation has been invented to make things easier. The function itself is
denoted by a letter, e.g. f . Instead of “square the number, and subtract it
from 5”, we can now write f . The letter f in itself contains no information
on what the function f does. If we want to show that, we need to write
down a formula:

f (x) = 5 − x
2
.

This notation means that when we send a number (x) through the function
f , what is done to the number is exactly what is described on the right
hand side. f (x) is read “f of x”, and the parenthesis shows that it is the
number x , we send through the function. The number we get as output is
called the function value.

Example 1.7 Here, we look at the function f (x) = x
2
− 3.

The function values f (−1) and f (4) are calculated like this:

f (−1) = (−1)
2
− 3 = 1 − 3 = −2

f (4) = 4
2
− 3 = 16 − 3 = 13 .

It is important to note that the x in the formula for f (x) is a place holder, i.e
it merely shows where we input numbers when we calculate the function
value. Therefore, we may use other variables in place of x instead of
numbers—or we can replace x by entire expressions.

Example 1.8 Here, we look again at the function f (x) = x
2
− 3. But this

time we calculate f (t) and f (x − 1), i.e. we insert t and x − 1 in place of x :

f (t) = t
2
− 3

f (x − 1) = (x − 1)
2
− 3 = x

2
+ 1

2
− 2 ⋅ x ⋅ 1 − 3 = x

2
− 2x − 2 .

If we input a mathematical expression, the output is another mathematical
expression.

If we want to examine the behaviour of a function, it would be useful to
draw its graph.

Example 1.9 Here, we look at the function

f (x) = 3 ⋅

√

x + 2 .
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The graph of the function is the graph of the equation y = f (x), i.e.

y = 3 ⋅

√

x + 2 ,

which is shown in �gure 1.10.

1 2

1

6

(2; 6)

(1)

(2)

Figure 1.10: The graph of f (x) = 3 ⋅
√

x + 2.

We see in the �gure that the graph passes through the point (2, 6), i.e.

f (2) = 6 .

We can also calculate this by inserting 2 in the formula for the function f :

f (2) = 3 ⋅

√

2 + 2 = 3 ⋅

√

4 = 3 ⋅ 2 = 6 .

But this just con�rms what we see on the graph.

If, on the other hand, we know the function value, we can �nd the corre-
sponding value of the independent variable. We can �nd it by using the
graph, but we can also solve the problem by calculation, as in the following
example:

Example 1.10 Where does the function g(x) = 2x + 1 assume the value
17?

We �nd the answer to this question by solving the equation g(x) = 17. This
can be done in the following way:

g(x) = 17 ⇔

2x + 1 = 17 ⇔

2x = 16 ⇔

x = 8 .

So the answer to the question is that g(x) = 17 when x = 8.

Domain and Range

The function in example 1.9, f (x) = 3 ⋅
√

x + 2, cannot use every possible
value of x as its input. E.g. if we try to calculate f (−5), we get

f (−5) = 3 ⋅

√

−5 + 2 = 3 ⋅

√

−3 ,

but we cannot take the square root of negative numbers, so this calculation
makes no sense. Therefore, this function value does not exist.

If we look at the graph of this function (�gure 1.10), we see that the graph
begins at x = −2. This is because the function value only makes sense
for values of x greather than or equal to −2. We say that the domain of f
consists of every number greater than or equal to −2. We can show this
explicitly by writing this condition after the formula:

f (x) = 3 ⋅

√

x + 2 , x ≥ −2 .

Sometimes we state a domain consisting of fewer numbers than the ones
that make sense mathematically. This might be because the function is a
model which is restricted to certain numbers.
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Example 1.11 The population of a certain town during the years 2000–
2017 is modelled by the function

b(t) = 24 ⋅ t + 5309 , 0 ≤ t ≤ 17 ,

where t is the number of years after 2000.

Here, 0 ≤ t ≤ 17 shows that the domain is the numbers from 0 to 17. We
restrict the domain to these numbers because the model only applies to the
years 2000–2017. So, even if it is mathematically possible to calculate e.g.
b(−10) or b(123), it is not allowed in this instance.

If we draw the graph, it therefore has to start at t = 0 and end at t = 17.

If we look again at the function

f (x) = 3 ⋅

√

x + 2 , x ≥ −2 ,

we notice that the function values are never negative. The reason is that
a square root is always positive. Therefore, the graph in �gure 1.10 lies
entirely above the �rst axis. The numbers which make up the possible
function values are called the range of the function. In this case, the range
of f is the set of positive numbers.

When we look at a graph, the domain consists of all of the numbers on the
�rst axis covered by the graph. The range consists of all the numbers on
the second axis covered by the graph.

1.5 Proportionality

One of the important relationships variables might exhibit, is proportion-
ality. There are two kinds of proportionality which are de�ned in the
following way:

De�nition 1.12: Proportionality

If k is some constant (k ≠ 0), we have:

1. y is directly proportional to x when y = k ⋅ x .
2. y is inversely proportional to x when y =

k

x
.

The constant k is called the constant of proportionality.

When we talk about direct proportionality, we often omit the word “di-
rectly”. If we write “. . . is proportional to . . . ”, we mean “. . . is directly
proportional to . . . ”.

If we rewrite the formulas in de�nition 1.12, the two types of proportinality
may also be written as

1. y is directly proportional to x if y

x
= k.

2. y is inversely proportional to x if y ⋅ x = k.



1.6 Intersections 13

Moreover, we see that when y = k ⋅ x , x =
1

k
⋅ y. So, if y is directly

proportional to x (with constant of proportionality k) then y is directly
proportional to x (with constant of proportionality 1

k
).

When y is inversely proportional to x , y = k

x
, but then we also have x =

k

y
.

Thus, if y is inversely proportional to x , x is also inversely proportional to
y (with the same constant of proportionality).

Example 1.13 If we look at a mobile phone payment plan where texts
are free, but calls cost DKK 0.70 per minute, the total cost will be directly
proportional to the number of minutes used.

If we call the cost C and the number of minutes M , we have:

C = 0.70 ⋅M .

Here, the constant of proportionality is 0.70.

Example 1.14 If we drive from Odense to Copenhagen (a distance of
approximately 160 km), the travel time will be inversely proportional to
the speed with which we drive.

If the time t is measured in hours and the speed v is measured in kilometres
per hour, the constant of proportionality will be 160, so

t =

160

v

.

From this relationship we gather (as we would expect) that if we drive at a
speed of 80 km/h, the trip from Odense to Copenhagen will last 2 hours,
whereas it will last only 1 hour if we drive at a speed of 160 km/h.

Example 1.15 “T is proportional to p squared, and inversely proportional
to s.”

This relationship is expressed by the formula

T = k ⋅

p
2

s

,

where k is the constant of proportionality.

1.6 Intersections

If we analyse the graph of a function, several points on the graph may be
of interest. For instance, we might be interested in those points where the
graph intercepts the axes of the coordinate system.

Every point on the �rst axis has second coordinate 0. If the graph intercepts
the �rst axis, the function value at the points of intercept must therefore
be 0. We can then �nd the value of the �rst coordinate at these points
by solving the equation f (x) = 0. On the second axis, every point has
�rst coordinate 0. The second axis intercept can therefore be found by
calculating the function value corresponding to x = 0, i.e. f (0).
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Example 1.16 The function f is given by

f (x) = −3x + 12 .

The �rst axis intercept can then be found by solving

f (x) = 0 ⇔ −3x + 12 = 0 ⇔ x = 4 .

So, the graph intercepts the �rst axis at (4, 0).

The second axis intercept happens where

y = f (0) = −3 ⋅ 0 + 12 = 12 ,

so the graph intercepts the second axis at (0, 12).

If we draw the graphs of two di�erent functions, it is possible for these
two graphs to intersect. We can then �nd their intersection by equating
the formulas for the two functions and solving the equation.

This must be true, because at the intersection, both functions must share
the same values of the independent variable and of the function value.

Example 1.17 The two functions

f (x) = x − 5 and g(x) = −2x + 1

have intersecting graphs (see �gure 1.11).

We �nd the coordinates of the intersection point by solving the equation
f (x) = g(x). We get

x − 5 = −2x + 1 ⇔

3x = 6 ⇔

x = 2 .

Now we know the �rst coordinate. To completely determine the point, we
also need to know the second coordinate. We �nd this by inserting the
calculated �rst coordinate into one of the functions:

y = f (5) = 2 − 5 = −3 .

So, the two graphs intersect at (2, −3). This is shown in �gure 1.11.

1

1

f

g

(2; −3)

(1)

(2)

Figure 1.11: The intersection between the
graphs of the two functions f (x) = x −5 and
g(x) = −2x + 1.

Solving Equations Graphically

We can �nd intersections between graphs by solving an equation. But then
we can also solve equations by �nding intersection points between graphs.

If we have a given equation, we can view the left and the right hand side
as formulas of functions. Where the two formulas are equal (i.e. where the
graphs intersect) we �nd the solution(s) to the equation.
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Example 1.18 The equation

x
2
− 3 = −2x

may be solved by drawing the graphs of

y = x
2
− 3 and y = −2x .

In �gure 1.12, we see that the two graphs intersect at (−3, 6) and (1, −2).
Therefore, the equation has two solutions:

x = −3 ∨ x = 1 .

1

1

(−3; 6)

(1; −2)

(1)

(2)

Figure 1.12: The solutions of x2 − 3 = −2x
are the �rst coordinates of the intersection
points.

1.7 Exercises

Exercise 1.1
Here are three important terms when dealing with math-
ematical relationships. Describe the meaning of each of
the terms.

Independent variablea)
Dependent variableb)
Constantc)

Exercise 1.2
The relationship between the area A of a circle and its
radius r is given by the following formula

A = π ⋅ r
2
.

Explain which quantities are variables and which
are constants.

a)

Which variable is the emphindependent variable
in the formula?

b)

Which variable is the emphdependent variable in
the formula?

c)

Exercise 1.3
The relationship between the two variables x and y is
given by the formula

y =

10

1 + x

.

Write down a table with corresponding x- and
y-values.

a)

Use the table to sketch a graph.b)
Use a CAS to draw the graph, and compare this
to your sketch.

c)

Explain the graphical meaning of the constant 10.d)

Exercise 1.4
The relationship between the two variables t and P is
given by the formula

P =

15

1 + t

+ 20 .

Write down a table with corresponding x- and
y-values.

a)

Use the table to sketch a graph.b)

Use a CAS to draw the graph, and compare this
to your sketch.

c)

Explain the graphical meaning of the constants
15 and 20.

d)

Exercise 1.5
A function has the formula f (x) = 3x − 14.

Determine the function values of x = 2 and
x = 10.

a)

Determine which value of x has function value
78.

b)

Exercise 1.6
A function is given by the formula

g(x) =

x

x − 2

.

Calculate g(1)a)

Calculate g(−2).b)

Solve the equation g(x) = 2.c)
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Exercise 1.7
For a function, any value of x corresponds to exactly
one value of y .

Which of these may be considered functions?

For any number x , we let y be the numbers which
divide x .

a)

For any number x , we let y be the square of x .b)

For any number x , we let y be the numbers for
which y

2
= x .

c)

For any number x , we let y be the numbers greater
than x .

d)

For any number x , we let y be the numbers equal
to x .

e)

Exercise 1.8
“Translate” the following into formulas of functions.

Add four to the number.a)

Multiply the number by �ve, and add two.b)

Square the number, multiply by seven, and sub-
tract one.

c)

Add four to the number then take the square root.d)

Square the number and multiply by two. Then
add four times the number and subtract �ve.

e)

Exercise 1.9
Find the domains of each of the following functions:

f (x) = 2x − 3a) f (x) =

√

x − 5b)

f (x) =

3

x − 6

c) f (x) =

1

x
2
+ 1

d)

f (x) =

2x

√

x − 3

e) f (x) =

1

x
2
− 9

f)

Exercise 1.10
Draw the graphs of the following functions and deter-
mine their ranges:

f (x) = 2x − 1 , −4 ≤ x ≤ 7a)

g(x) = x
2
− 4x + 1 , 0 < x ≤ 12b)

ℎ(x) =

√

x
2
+ 7 , −3 < x < 3c)

Exercise 1.11
Describe the relationship between x and y with a for-
mula when

y is directly proportional to x with constant of
proportionality 4.

a)

y is inversely proportional to x with constant of
proportinality 9.

b)

Exercise 1.12
T is directly proportional to S, and S = 4 when T = 12.

Write down a formula describing the relationship be-
tween T and S.

Exercise 1.13
Fill out the missing parts of the table below when y and
x are directly proportional.

x : 1 3 9

y : 18 42

Exercise 1.14
Fill out the missing parts of the table below when y and
x are inversely proportional.

x : 1 4 16

y : 4 2

Exercise 1.15
The two functions f and g are given by

f (x) = 3x + 8

g(x) = 7x − 4

Determine the intersection point between the graphs of
the two functions.

Exercise 1.16
Solve the following equations graphically:

3x − 2 = 4x + 7a)

x
2
+ 5 = x − 1b)

10

x − 6

= x + 3c)
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Functions may be grouped by the form of their formulas.1 E.g., the functions 1They can also be grouped by the form of
their graphs, but this is essentially the same
thing.

f (x) = 3x + 2, g(x) = 7x − 5 and ℎ(x) = −4x + 3

have formulas that follow the same pattern.

Functions which look like f , g and ℎ are called linear functions.

De�nition 2.1

A linear function is a function of the form

f (x) = ax + b ,

where a and b are two numbers.

One of the reasons, the functions are called linear, is that their graphs are
always straight lines (see �gure 2.1). 1

5

f

g

ℎ

(1)

(2)

Figure 2.1: The graphs of the three linear
functions f , g and ℎ.

2.1 Slope and Axis Intercepts

We can actually �nd the values of the numbers a and b in the formulas of
the functions by looking at the graphs in �gure 2.1. We have the following
theorem:

Theorem 2.2

For a linear function f (x) = ax + b, the following holds:

1. If the independent variable x increases by 1, the function value
f (x) increases by a.

2. The graph of the function intercepts the second axis at b.

Proof
When x increases by 1, the function value increases from f (x) to f (x + 1).
So, the function value increases by

f (x + 1) − f (x) = (a(x + 1) + b) − (ax + b)

= ax + a + b − ax − b

= a .

17
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On the second axis, x = 0, i.e. the second axis intercept is

f (0) = a ⋅ 0 + b = b . ■

For linear functions, the function value increases by a �xed number (a)
whenever x increases by 1. This is the reason why the graph is a straight
line. The greater the number a, the faster f (x) increases, and the line
becomes steeper. The number a is therefore called the slope of the line.

If a is a negative number, f (x) decreases when x increases, and the line
will slope downwards; then the function is decreasing.

Theorem 2.3

For a linear function f (x) = ax + b, the slope a has the following
properties:

1. If a > 0, the function is increasing.
2. If a < 0, the function is decreasing.

1

−2

1

f

a = 1

g

a = −3

(1)

(2)

Figure 2.2: Determining the numbers a and
b.

Example 2.4 Figure 2.2 shows the graphs of two linear functions f and g.

The graph of f intercepts the second axis at −2, and if we move 1 to the
right, we must move 1 up to stay on the graph, i.e. the slope is a = 1.

Therefore, f has the formula f (x) = 1 ⋅ x + (−2) which simpli�es to

f (x) = x − 2 .

The graph of g intercepts the second axis at 1, and when we move 1 along
the �rst axis, the line moves 3 down the second axis, i.e. the slope is −3.
The formula for g is then

g(x) = −3x + 1 .

In the special case where the slope of a linear function is 0, the function is
constant; i.e. the graph is a straight line parallel to the �rst axis. Such a
line has no intercepts with the �rst axis.22Unless the line lies entirely on the �rst axis,

in which case they have an in�nite amount
of common points. On the other hand, a linear function with a non-zero slope must have a

graph which intercepts the �rst axis. We can calculate this intercept from
the formula.

Theorem 2.5

The graph of the linear function f (x) = ax + b intercepts the �rst axis
at (− b

a
; 0).

Proof
On the �rst axis the second coordinate is 0.3 The graph of f therefore3Remember that every point on the �rst axis

has the form (x, 0), and every point on the
second axis has the form (0, y).

intercepts the �rst axis where

f (x) = 0 ,
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i.e.
ax + b = 0 ⇔ ax = −b ⇔ x = −

b

a

.

Thus, the graph intercepts the �rst axis at (− b

a
; 0). ■

Example 2.6 The linear function f (x) = 4x − 12 intercept the second axis
at b = −12 and has slope a = 4. So, it intercepts the �rst axis at

x = −

b

a

= −

−12

4

= 3 .

Therefore, the graph intercepts the �rst axis at the point (3, 0) and the
second axis at the point (0, −12).

2.2 Determining the Formula

If we know two points on the graph of a linear function, the function is
clearly de�ned.4 So, there must be a connection between the coordinates 4Exactly one straight line passes through

any two given points.of the two points, and the two numbers a and b.

This connection is given by a simple formula:

Theorem 2.7

If the graph of f (x) = ax + b passes through the two points P (x1, y1)
and Q(x2, y2), then

a =

y2 − y1

x2 − x1

.

x1 x2

b

y1

y2

P

Q 1
a

(1)

(2)

Figure 2.3: The two points P and Q on the
graph of f (x) = ax + b.

Proof
Figure 2.3 shows the graph of the function f (x) = ax +b, and the two points
P (x1, y1) and Q(x2, y2).

The points P and Q are on the line, so f (x1) = y1 and f (x2) = y2. This gives
us the equations:

y2 = ax2 + b ,

y1 = ax1 + b . (2.1)

If we subtract the last equation from the �rst, we get

y2 − y1 = (ax2 + b) − (ax1 + b) ,

which simpli�es to
y2 − y1 = ax2 − ax1 .

Now, we factor out a and get

y2 − y1 = a(x2 − x1) ⇔

y2 − y1

x2 − x1

= a ,

which proves the formula. ■
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Example 2.8 A linear function f has a graph which passes through P (3, 5)

and Q(6, 7). What is the formula for this function?

To answer this question, we look at the two points and see that

x1 = 3 , y1 = 5 , x2 = 6 and y2 = −7 .

Now, we use the formula from theorem 2.7 and get

a =

y2 − y1

x2 − x1

=

−7 − 5

6 − 3

=

−12

3

= −4 .

So, the formula for the function is f (x) = −4x + b, and b is yet unkown.

We then �nd the number b by inserting the coordinates of one of the known
points into the formula of the function. Since the graph of f passes through
P (3, 5), we know that f (3) = 5 and

−4 ⋅ 3 + b
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

f (3)

= 5 ⇔ b = 5 + 4 ⋅ 3 ⇔ b = 17 .

Therefore, the formula of the function is f (x) = −4x + 17.

We can also deduce the following theorem, which we may use to determine
a formula directly if the slope is known:

Theorem 2.9

If the linear function f has slope a, and the graph of the function passes
through the point (x1, y1), then the formula of the function is given by

f (x) = a(x − x1) + y1 .

Proof
A linear function has the general formula f (x) = ax + b. If the point (x1, y1)
is on the graph of f , then

y1 = ax1 + b ⇔ b = y1 − ax1 .

We insert this expression for b into the formula of f :

f (x) = ax + (y1 − ax1) .

With a bit of calculation, we then get:

f (x) = ax + y1 − ax1 = ax − ax1 + y1 = a(x − x1) + y1 ,

which proves the theorem. ■

Example 2.10 If a linear function has a graph passing through the points
P (3, 5) and Q(6, −7), its slope is a = −4 (see example 2.8).

The formula of the function can then be found by inserting the coordinates
of one of the two points in the formula from theorem 2.9. Here, we choose
the point Q(6, −7):

f (x) = a(x − x1) + y1 = −4(x − 6) − 7 = −4x + 24 − 7 = −4x + 17 .

So, in this way we �nd the same formula as we did in example 2.8.
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2.3 Linear Growth

Linear functions grow in the following way:5 5We can also deduce this theorem from the-
orem 2.2.

Theorem 2.11

For a linear function f (x) = ax + b, whenever x increases by Δx , the
function value increases by a ⋅ Δx .

Proof
If x increases from x1 to x2, where x2 = x1+Δx , the function value increases
from

y1 = f (x1) = ax1 + b

to
y2 = f (x2) = f (x1 + Δx) = a(x1 + Δx) + b = ax1 + a ⋅ Δx + b .

So, the function value increases by

y2 − y1 = (ax1 + a ⋅ Δx + b) − (ax1 + b) = a ⋅ Δx .

This proves the theorem. ■

Example 2.12 Table 2.4 shows an example of linear growth.

For the function f (x) = 3x + 7, every time x increases by 2, the function
value increases by 3 ⋅ 2.

Table 2.4: Growth of f (x) = 3x + 7.

x y

−2 1
0 7
2 13
4 19

+2

+2

+2

+3 ⋅ 2

+3 ⋅ 2

+3 ⋅ 2

Example 2.13 Here, we look at the function f (x) = 3x −4which has slope
a = 3. If x increases by Δx = 5, the function value increases by

a ⋅ Δx = 3 ⋅ 5 = 15 .

Each time x increases by 5, the function value increases by 15.

We could also ask how much x must increase for the function value to
increase by 60? In this case a ⋅ Δx = 60, i.e.

3 ⋅ Δx = 60 ⇔ Δx = 20 .

So, x has to increase by 20 for the function value to increase by 60.

Example 2.14 For the function f (x) = −2x + 7, whenever x increases by
Δx = 3, the function value increases by

a ⋅ Δx = −2 ⋅ 3 = −6 .

When the function value increases by −6, it actually decreases by 6, each
time x increases by 3.6 6A negative increase corresponds to a de-

crease. In most mathematical growth mod-
els, it is useful to calculate using signs all
the way, and then at the end use the sign
of the result to determine whether we are
looking at an increase or a decrease.

Next, we give a few examples of how a mathematical description of linear
growth can answer di�erent questions.
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Example 2.15 In a certain town, the population is given by

N (x) = 213x + 14 752 ,

where N (x) is the population x years after the year 2000.

The formula contains two constants,7 213 and 14 752. The function N (x) is7Remember that a constant is a �xed num-
ber a linear function, so the number 213 is a slope: Each time x increases by

1, the function value increases by 213. Since x is measured in years and
the function value is equal to the population, we see that the population
increases by 213 inhabitants, whenever x increases by 1 year. Therefore,
the population increases by 213 inhabitants per year.

14 752 is the second axis intercept. We �nd this number where x = 0. This
happens in the year 2000,8 and we therefore know that the population of8Since 2000 is 0 years after 2000.
the town was 14 752 in the year 2000.

Example 2.16 Here we look at the same model as the one in example 2.15,

N (x) = 213x + 14.752 .

How much does the population increase during a 10-year period?

The formula shows that the population increases by 213 inhabitants per
year. During a 10-year period, we therefore have an increase of

10 ⋅ 213 = 2130

inhabitants.

Example 2.17 A company produces a number of items. The cost of pro-
duction is a base cost of DKK 2000 and DKK 17 per item produced.

The total cost is therefore a function of the number of items produced. This
function has the formula

o(x) = 17x + 2000 ,

where x is the number of items, and o(x) is the total cost.

Example 2.18 The mean temperature in West Greenland depends on the
latitude[2] according to the model

T (x) = −0.732x + 46.1 ,

where T is the mean temperature (in ◦
C) and x is the latitude.

So, the mean temperature in West Greenland decreases by 0.732◦C when
the latitude increases by 1 degree.

If we try to interpret the number 46.1, we see that it should be the tem-
perature at latitude 0 degrees, i.e. at the equator. But this interpreation is
meaningless because the model only applies to West Greenland.

It is therefore impossible to give a physical interpretation of the number
46.1.
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2.4 Piecewise Linear Functions

Functions whose graphs consist of pieces of straight lines are called piece-
wise linear functions. The graph of a piecewise linear function is shown in
�gure 2.5.

Here, we can see that when x is less than 2, the graph corresponds to the
equation

y = x + 1 ,

and when x is greater than 2, the graph corresponds to the equation

y = −2x + 7 ,

1

1

(1)

(2)

Figure 2.5: The graph of a piecewise linear
function.

If the function is denoted by f , we can write its formula like this:

f (x) =

{

x + 1 for x < 2

−2x + 7 for x ≥ 2

.

A function whose graph is an unbroken curve is called a continuous function.
Piecewise linear functions are not necessarily continuous. An example of
a discontinuous piecewise linear function might be

g(x) =

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

−x − 4 for x < −2

2x + 2 for − 2 ≤ x < 3

1

2
x + 1 for x ≥ 3

.

The graph of g is shown in �gure 2.6.
1

1

(1)

(2)

Figure 2.6: The graph of a discontinuous
piecewise linear function.

The �lled circle on the graph marks a point which belongs to the graph,
whereas the empty circle marks a point which does not belong to the graph.
For the function g, the function value g(3) must be calculated using the
lower “branch” of the formula—therefore the point belongs to the rightmost
line.

2.5 Exercises

Exercise 2.1
The �gure on the right shows the 3 straight lines � , m
and n which are graphs of the functions

f (x) = 4x − 1 ,

g(x) = 2x + 3 and
ℎ(x) = x + 3 .

Which line is the graph of which function?

m

�

n

(1)

(2)
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Exercise 2.2
Use the graphs below to determine formulas for the
functions f1,… , f6.

1

1

f1
f2

f3

f4

f5

f6

(1)

(2)

Exercise 2.3
Determine a formula for the linear function whose graph
passes through P and has slope a:

P (0, 4) og a = 2.a)

P (2, 1) og a = −
1

2
.b)

Exercise 2.4
Determine a formula for the linear function whose graph
passes through the points:

A(2, 3) and B(−1, 9)a)
C(−3, 2) and D(−4, 1)b)
P (−5, 1) and Q(7, 1)c)

Exercise 2.5
The straight line � passes through the points A(4, −2)
and B(5, 5).

Calculate a formula for the linear function whose graph
passes through C(3, −2) and is parallel to � .

Exercise 2.6
A straight line � passes through the points P (3, −7) and
Q(8, 8).

Determine an equation for this line.a)
Determine where this line intercepts the �rst axis.b)

Exercise 2.7
Determine the intersection point between the graphs of
the two linear functions

f (x) = 2x − 1 and g(x) = 3x + 7 .

Exercise 2.8
For the linear function ℎ(t), ℎ(−1) = −13 and ℎ(4) = 32.

Determine a formula for this function.a)
Solve the equation ℎ(t) = 23.b)

Exercise 2.9
A straight line with slope 3 passes through the point
(6, 14).

Determine an equation for this line.a)
What is the increase in y, when x increases by
10?

b)

Exercise 2.10
A straight line with slope 4 passes through the point
(2, 5).

Determine an equation for this line.a)
What is Δy when Δx = 12?b)

Exercise 2.11
A straight line with slope −2 passes through the point
(3, 1).

Determine an equation for the line.a)
What is Δx when Δy = 38?b)

Exercise 2.12
Determine by calculation whether the points A, B and
C lie on a straight line when

A(19, 12), B(27, 25) and C(40, 46)a)
A(−6, −3), B(−1, 5) and C(7, 18)b)

Exercise 2.13
The price of a certain item grows linearly with time.
The price was DKK 66 in 2010 and DKK 76 in 2015.

What will the price be in 2019?a)
When will the price be DKK 100?b)

Exercise 2.14
A linear function f increases by 8 when x increases by
4. It is also known that the graph of f passes through
the point (3, 4).

Determine a formula for f .

Exercise 2.15
The function f is given by

f (x) =

{

−x − 4 for x ≤ −1

2x − 1 for x > −1

Draw the graph of f .a)
Calculate f (5) and f (−2).b)
Solve the equation f (x) = 6.c)
Solve the equation f (x) = −3.d)
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When we measure a series of data, we might obtain a series of data points
which only approximately form a straight line. An example is shown in
�gure 3.1.

1

100

y = 39, 8x + 266, 4

(1)

(2)

Figure 3.1: A series of data points and the
straight line which is a best �t for these
points.

Because the points do not lie exactly on a straight line, it would be wrong
to use theorem 2.7 to calculate a formula. Depending on which two points
we use, we would get di�erent results for the values of a and b.

Instead, we use a method called linear regression to determine which straight
line is a best �t for all of the points. This method is built into most spread-
sheets and mathematical computer programmes. Therefore, we usually
only need to input the points in our programme which will then calculate
the equation of the line. The equation in �gure 3.1 is found in this way.

The idea is to �nd the line which minimises the distance from the line to all
of the data points. This “collective distance” is de�ned to be the sum of the
squares of the vertical distances from the line to the points. In �gure 3.2,
this sum is

D = d
2

1
+ d

2

2
+ d

2

3
+ d

2

4
.

d1

d2

d3

d4

(1)

(2)

Figure 3.2: We minimise the sum of the
squares D = d

2

1
+ d

2

2
+ d

2

3
+ d

2

4
.

This sum contains as many terms as there are data points. The best �t is
then the line which minimises D.

When we have n data points with coordinates

(x1; y1),… , (xn; yn) ,

the slope of the line and its second axis intercept may be calculated from
the x-values x1,… , xn and the y-values y1,… , yn using two formulas.

Quite advanced mathematics is required to deduce the two formulas for a
and b, so we are not going to prove them here; we merely state them in
the following theorem:

25
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Theorem 3.1

The best-�t straight line given the points (x1; y1),… , (xn; yn) has equa-
tion y = ax + b where

a =

x ⋅ y − x ⋅ y

x
2
− x

2

b = y − a ⋅ x .

Here, x is the mean of the x-values, y is the mean of the y-values, etc.

As previously stated, we are not going to prove these formulas. Instead,
we provide an example which shows how to use them:

Example 3.2 Table ?? shows the related values of the independent variable
x and the dependent variable y . The formulas for the best-�t straight line
require a range of mean values. These are calculated in table 3.4.

Table 3.3: Related values of x and y .

x y

0 1
2 3
4 6
6 8

Table 3.4: x , y, x ⋅ y and x
2. The mean

values are listed in the last row.

x y x ⋅ y x
2

0 1 0 0
2 3 6 4
4 6 24 16
6 8 48 36

x y x ⋅ y x
2

3 4.5 19.5 14

We can now calculate

a =

x ⋅ y − x ⋅ y

x
2
− x

2

=

19.5 − 3 ⋅ 4.5

14 − 3
2

= 1.2 .

and

b = y − a ⋅ x = 4.5 − 1.2 ⋅ 3 = 0.9 .

So, the best-�t straight line has the equation

y = 1, 2x + 0, 9 .

The points and the line are shown in �gure 3.5.

2 4 6

2

4

6

8

y = 1.2x + 0.9

(1)

(2)

Figure 3.5: The 4 data points and the best-
�t line.

The example demonstrates that using the formulas in theorem 3.1 to calcu-
late an equation for the line can be quite cumbersome. So, in most cases
we would simply use the tools built into a CAS to determine the best-�t
line from the data points.

3.1 The Coe�cient of Determination

When we use a CAS to �nd the best-�t line, we often also �nd a quantity
known as the coe�cient of determination, usually denoted R

2. It is a number
between 0 and 1, which tells us how well the line �ts the points. The closer
this number is to 1, the better the line �ts the points.

We can calculate the coe�cient of determination by using the following
formula:
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Theorem 3.3

For the best-�t straight line of the points (x1, y1),… , (xn, yn), the coef-
�cient of determination is

R
2
= a

2
⋅

x
2
− x

2

y
2
− y

2

.

The number satis�es 0 ≤ R
2
≤ 1, and the closer R2 is to 1, the better

the line �ts the points.

Example 3.4 If we look at the data set from example 3.2, we �nd

x = 3 , x
2
= 14 , y = 4.5 and y

2
= 27.5 .

In the example, we calculated a = 1.2, so the coe�cient of determination is

R
2
= a

2
⋅

x
2
− x

2

y
2
− y

2

= 1.2
2
⋅

14 − 3
2

27.5 − 4.5
2
= 0.9931 .

This number is quite close to 1, therefore the straight line �ts the data
points quite well, which is also apparent from the graph in �gure 3.5.

3.2 Why are Graphs Important?

When we �nd a straight line via linear regression, we do not actually need
to draw the graph. We could just get a CAS to determine the equation of
the line and the coe�cient of determination R

2. We could then use the
coe�cient of determination to decide whether it is reasonable to use this
straight line to model the data.

But it is always sensible to draw the graph; because it turns out that we
can get the same straight line and coe�cient of determination from widely
di�erent sets of data.

In 1973, the statistician Francis Anscombe described four di�erent data sets
which had the samme regression equation and coe�cient of determination,
but looked very di�erent.[1] The four data sets are shown in table 3.6.

If we plot the data sets in four di�erent coordinate systems, we get �gure 3.7.
Wee see clearly that the four data sets represent very di�erent distributions
of data. The �rst data set could quite possibly be modelled by a straight
line—the points seem to be distributed randomly around the line. The next
data set (top right) shows a de�nite relationship; but it is de�nitely not
linear. The last to data sets both have a point which is positioned very
di�erently from the rest of the data (such a point is called an outlier).

Despite these di�erences, all of the data sets have the same regression
equation and determination coe�cient, which are

y = 0.50 ⋅ x + 3.00 , R
2
= 0.67 .

We therefore conclude that drawing the graph is a good idea, because it
allows us to determine how the points are distributed, before we decide
whether or not to do a linear regression.
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x y

4 4.26
5 5.68
6 7.24
7 4.82
8 6.95
9 8.81
10 8.04
11 8.33
12 10.84
13 7.58
14 9.96

x y

4 3.1
5 4.74
6 6.13
7 7.26
8 8.14
9 8.77
10 9.14
11 9.26
12 9.13
13 8.74
14 8.1

x y

4 5.39
5 5.73
6 6.08
7 6.42
8 6.77
9 7.11
10 7.46
11 7.81
12 8.15
13 12.74
14 8.84

x y

8 6.58
8 5.76
8 7.71
8 8.84
8 8.47
8 7.04
8 5.25
8 5.56
8 7.91
8 6.89
19 12.5

Table 3.6: Anscombe’s four data sets. From
[1].

2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

(1)

(2)

2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

(1)

(2)

2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

(1)

(2)

2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

(1)

(2)

Figure 3.7: Anscombes four data sets plot-
ted in four coordinate systems.
We see clearly that the distributions are very
di�erent.
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In cases where one point is very di�erent from the others, we might choose
to investigate this further. Might it, for instance, be the result of a measure-
ment error?

3.3 Residual Plots

When we determine the best-�t straight line of a series of data points, the
points are distributed around this line. Because the point (xi , yi) lies close
to but not on the the line, it does not satisfy the equation y = ax + b, but
instead

yi = axi + b + "i ,

where "i is the vertical distance from the point to the line. In a way, "i
expresses the error we make when we use the equation of the line to model
the relationship between the variables. We call this the residual of the
point.

If we isolate "i in the equation (3.3), we get

"i = yi − axi − b .

It is relatively easy to show that the mean of the residuals is 0. This is left
as an exercise for the reader.

If the straight line is a good model of the relationship in question, the
residuals are small compared to the y-values, and they are distributed
randomly. We can investigate whether this is the case by drawing a residual
plot which is a plot of the residuals as a function of the x-values.

Example 3.5 In example 3.2, we found the best-�t straight line of a series
of related values of x and y . The equation of this straight line was

y = 1.2x + 0.9 .

Using a = 1.2 og b = 0.9, we calculate the residuals. E.g. we have

"1 = y1 − ax1 − b = 1 − 1.2 ⋅ 0 − 0.9 = 0.1 .

The points and the residuals are listed in table 3.8.

Table 3.8: Related values of x and y , as well
as the residuals ".

x y "

0 1 0.1
2 3 −0.3

4 6 0.3

6 8 −0.1

The residual plot is shown in �gure 3.9. The second axis of this plot shows
that the residuals are small compared to the measured y-values. The plot
also shows that the residuals are distributed randomly around the �rst axis.
In this case, it therefore seems reasonable to use a linear model.
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Figure 3.9: Residual plot of the values in
table 3.8.

A series of data points might appear to lie on a straight line even though
a di�erent model describes the data much better. If this is the case, the
residual plot typically displays some form of pattern.

Example 3.6 Figure 3.10 shows a series of data points and a regression
line. At a �rst glance, the line appears to be a good approximation to the
points.
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Figure 3.10: A series of data points and
their regression line.

But when we look at the residual plot in �gure 3.11, we see clearly that
the straight line is not a good model for these points. In this case, the
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residuals are not distributed randomly, but appear to form some sort of
curve. Therefore, it would seem that the data should be described by some
nonlinear model.

2 4 6 8

−0.4

−0.3

−0.2

−0.1

0.1

0.2

0.3

0.4

(1)

(2)

Figure 3.11: The residual plot of the data
in �gure 3.10.

3.4 Exercises

Exercise 3.1
A series of related values of the variables x and y have
been measured. The measurements are listed in the
table below.

x : 1 2 3 4

y : 5 7 8 11

Use the formulas in theorem 3.1 to calculate a and
b for the best-�t straight line.

a)

Calculate the residuals.b)

Exercise 3.2
The following 3 tables show 3 di�erent relationships
between the variables x and y.

x : 1 2 3 4 5 6

y : 3.2 4.9 7.3 8.8 10.9 13.4

x : 1 2 3 4 5 6

y : 1.4 1.2 1.1 1.0 0.9 0.8

x : 1 2 3 4 5 6

y : 0.1 1.4 2.9 4.6 6.5 8.6

Determine the best-�t line, and plot the residuals
for each of the 3 data sets.

a)

Use the residual plots to assess for which of the 3
data sets, the straight line is a good model.

b)

Exercise 3.3
For a copper wire, the resistance measured inΩ depends
linearly on the temperature measured in ◦

C. A series of
measurements have yielded the following data:

Temperature (◦C) : 0 15 30 45 60

Resistance (Ω) : 54.9 58.4 61.9 66.2 69.0

Determine the linear model which best �ts the
data.

a)

At what temperature is the resistance 5 Ω?b)

Exercise 3.4
A series of measurements have yielded the following
relationship between the wind speed and the noise pro-
duced by a windmill:

Wind speed (m
s

) : 6.3 7.2 8.5 9.4

Noise level (dB) : 51 56 65 71

The data set can be approximated by a linear model
y = ax + b where x is the wind speed, and y is the noise
level.

Determine the numbers a and b in the equation.a)

What do the constant a and b represent in this
model?

b)

Determine the wind speed at which the noise level
is 75 dB.

c)

Determine how much the wind speed must de-
crease for the noise level to decrease by 10 dB.

d)
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Fractions

Equivalent fractions (1) a

b

=

a/k

b/k

(2) a

b

=

k ⋅ a

k ⋅ b

Addition (3) a

b

+

c

d

=

a ⋅ d

b ⋅ d

+

b ⋅ c

b ⋅ d

Subtraction (4) a

b

−

c

d

=

a ⋅ d

b ⋅ d

−

b ⋅ c

b ⋅ d

Multiplication (5) a

b

⋅

c

d

=

a ⋅ c

b ⋅ d

Division (6) a

b
/

c

d

=

a

b

⋅

d

c

Powers and Roots

(7) a
0
= 1

Negative exponent (8) a
−n
=

1

a
n

Fractional exponent (9) a

p

q =
q
√

a
p

Same base (10) a
x
⋅ a

y
= a

x+y

(11) a
x

a
y
= a

x−y

(12) (a
x
)
y
= a

x ⋅y

Same exponent (13) a
x
⋅ b

x
= (a ⋅ b)

x

(14) a
x

b
x
=
(

a

b
)

x

Same root (15) x
√

a ⋅
x
√

b =
x
√

a ⋅ b

(16)
x

√

a

x
√

b

=
x

√

a

b

Algebra

The associative law (17) a + (b + c) = (a + b) + c = a + b + c

(18) a(bc) = (ab)c = abc



The distributive law (19) a(b + c) = ab + ac

Square of a sum (20) (a + b)
2
= a

2
+ b

2
+ 2ab

Square of a di�erence (21) (a − b)
2
= a

2
+ b

2
− 2ab

Di�erence of squares (22) (a + b)(a − b) = a
2
− b

2

Functions

y is directly proportional to x (23) y = k ⋅ x

y is inversely proportional to x (24) y =

k

x

Linear functions

b

a > 0

a < 0

(1)

(2)

Linear function (25) f (x) = ax + b

Slope from two
points (x1; y1) og (x2; y2) on
the graph

(26) a =

y2 − y1

x2 − x1

y-axis intercept (27) b = y1 − ax1

Linear regression

Best-�t straight line (28) a =

x ⋅ y − x ⋅ y

x
2
− x

2

(29) b = y − a ⋅ x

Coe�cient of determination (30) R
2
= a

2
⋅

x
2
− x

2

y
2
− y

2

Residual (31) "i = yi − axi − b
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