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1Limits

When we investigate functions, it sometimes happens that the function is

unde�ned for certain values of the independent variable.

Example 1.1 The function g(x) = 1
x−3 is unde�ned for x = 3. The reason

why the function is unde�ned here, is that when you try to calculate g(3),
you get

g(3) =
1

3 − 3
=
1
0
,

which is unde�ned.

If we draw the graph of this function, we get �gure 1.1. Here, it is clear

that something special happens around x = 3, and that it does not make

sense to talk about the function value g(3).

1 3

1

g

(1)

(2)

Figure 1.1: The graph of g(x) = 1
x−3 .

But functions exist which behave di�erently in places where they are not

de�ned.

Example 1.2 Look at the function

f (x) =
x2 − 5x + 6

x − 3
.

This function is unde�ned for x = 3 because

f (3) =
32 − 5 ⋅ 3 + 6

3 − 3
=
0
0
,

which has no meaning.

If we draw the graph of f , we get �gure 1.2. Here, we see that even though

the function is unde�ned for x = 3, the graph allows us to say what f (3)
should have been if this value were de�ned.

1 3

1

(1)

(2)

Figure 1.2: The graph of f (x) = x2−5x+6
x−3 .

If we input values of x which are “close to” 3, we get table 1.3. From

�gure 1.2 and table 1.3, it seems reasonable to claim that the closer x gets

to 3, the closer f (x) will get to 1.

Table 1.3: Function values for the function

f (x) = x2−5x+6
x−3 .

x f (x)

2.9 0.9

2.99 0.99

3 unde�ned

3.01 1.01

3.1 1.1

So, if we were to give f (3) a value, it seems reasonable to choose 1—even

though f (3) actually is unde�ned.

Even if f (3) is unde�ned for the function in example 1.2, f (x) will approach

a certain value as x approaches 3. We say that f (x) has a limit for x
approaching 3. This limit has the value 1. We write this as

lim
x→3

f (x) = 1 .

5



6 Limits

The limit of the function f (x) as x approaches 3 is 1 because f (x) gets closer

and closer to 1 as x gets closer and closer to 3. If we are to give a precise

mathematical de�nition of limits, we need to describe �rst what we mean

by “close to”. Therefore, we de�ne a so-called neighbourhood:

De�nition 1.3

Given a number a and a distance ", we de�ne the open neighbourhood
Ω"(a) to be the open interval ]a − "; a + "[ .

The punctured neighbourhood Ω◦
"(a) of a is the open neighbourhood

Ω"(a) with the number a removed: Ω◦
"(a) = Ω"(a) ⧵ {a}.

The point is that the neighbourhood Ω"(a) contains all of the numbers

closer to a than ". If " is a small number, the neighbourhood contains the

numbers which are “close to” a—and if we let " get smaller and smaller, we

are looking at numbers which get closer and closer to a.

We need a punctured neighbourhood because when we look at a neigh-

bourhood of x0, the function we are looking at is not necessarily de�ned at

this value of x . Therefore, we need a neighbourhood where this number is

excluded.

We may then de�ne the limit of a function at a given point in the following

way:

De�nition 1.4

Let a function f and a number L be given, and let f (x) be de�ned for

all x in a punctured neighbourhood of x0.

If for any arbitrarily small open neighbourhood Ω"(L) of L, we can �nd

a punctured neighbourhood Ω◦
� (x0) of x0 so that

x ∈ Ω◦
� (x0) ⇒ f (x) ∈ Ω"(L) ,

we call L the limit of f (x) for x approaching x0, and we write

lim
x→x0

f (x) = L .

Figure 1.4 shows how we may describe this: The function value f (x)will be

in the small neighbourhoodΩ"(L) of L, as long as x is in the small punctured

neighbourhood Ω◦
� of x0. So, no matter how small a neighbourhood we

choose around L, we can always �nd a small punctured neighbourhood

around x0, so that if x is in this small punctured neighbourhood, f (x) will

be in the chosen neighbourhood of L.

x0

L Ω" (L)

Ω◦
� (x0)

(1)

(2)

Figure 1.4: If the function value must be

in the neighbourhood Ω" (L) of L, we can

achieve this by letting x be in the small

punctured neighbourhood Ω◦
� (x0) of x0.

Since we can make the neighbourhood Ω"(L) arbitrarily small, this is the

same as saying that when x gets closer and closer to x0, f (x) will get closer

and closer to L.

Note that de�nition 1.4 does not consider a possible function value at

x = x0. I.e. the function might be de�ned for this value of x , or it might be

unde�ned. If the function f is de�ned at x0, a function value f (x0) exists,



Limits 7

but the limit is de�ned completely independent of this value—and a possible

function value does not even have to be equal to the limit.

If we want to investigate, how functions behave close to values of x where

they are de�ned, what do we �nd then?

Example 1.5 What is lim
x→5

x2 + 3?

The expression x2 + 3 is de�ned for x = 5, where the expression yields

52 + 3 = 28 .

If we let x approach 5, the value of x2 + 3 will approach 28, and we �nd

lim
x→5

x2 + 3 = 28 .

Sometimes we can just input the x we want to investigate, into the function.

If we are looking for the limit of a function f (x) as x approaches x0, we

can sometimes just calculate f (x0). However, this is not always the case.

Sometimes it is not the case even when the function is de�ned for x = x0.

1

1

(1)

(2)

Figure 1.5: The graph of the piecewise lin-

ear function in example 1.6.

Example 1.6 Here, we look at the function

f (x) =

{
x + 1 for x < 2
4 − x for x ≥ 2

.

So, the function f behaves in such a way that it is equal to x + 1 as long

as x < 2, and thereafter it is equal to 4 − x . Therefore, we are looking at a

piecewise linear function. The graph of f is shown in �gure 1.5.

The function value at x = 2 is

f (2) = 4 − 2 = 2 ,

but what is the limit of this function as x approaches 2?

When x < 2, f (x) = x + 1, i.e. f (x) will get closer and closer to 2 + 1 when

x gets closer to 2. If we investigate the limit by approaching x = 2 from

below, we �nd the value 3.

But if we investigate the limit of f (x) by approaching x = 2 from above, we

follow the graph of 4 − x , and then the function value approaches 2, when

x approaches 2.

Because we get two di�erent answers, depending on which way we ap-

proach x = 2, we conclude that the limit lim
x→2

f (x) does not exist—even

though the function itself is de�ned for x = 2.

Example 1.7 In example 1.2, we looked at the function f (x) = x2−5x+6
x−3 and

came to the conclusion that

lim
x→3

f (x) = 1 .
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We could argue that this cannot be known just from looking at �gure 1.2

and table 1.3, because it is impossbile to know whether the true limit is e.g.

1, 00000326 (and not exactly 1) based solely on the �gure and the table.

However, we can rewrite x2 − 5x + 6 as (x − 2)(x − 3), and therefore

x2 − 5x + 6
x − 3

=
(x − 2)(x − 3)

x − 3
= x − 2 ,

as long as x ≠ 3.

But because the de�nition of a limit is independent of how the function

actually behaves when x = 3 and only depends on what happens when x
is close to 3, we have

lim
x→3

x2 − 5x + 6
x − 3

= lim
x→3

x − 2 .

Thus we have reduced the problem to �guring out which number x − 2
approaches when x approaches 3. This number is exactly 1.

So,

lim
x→3

x2 − 5x + 6
x − 3

= 1 .

As the example above shows, it makes sense to investigate whether the

function we are looking at, when we are looking for a limit, can be rewritten

so that it is easier to see what the limit is.

Besides simplifying the expression, for which we are �nding the limit, we

can also use the following rules,[1] which we will not prove here:

Theorem 1.8

Let two functions f and g, and a constant k be given. If lim
x→x0

f (x) and

lim
x→x0

g(x) exist, then

1. lim
x→x0

k ⋅ f (x) = k ⋅ lim
x→x0

f (x)

2. lim
x→x0

f (x) + g(x) = lim
x→x0

f (x) + lim
x→x0

g(x)

3. lim
x→x0

f (x) − g(x) = lim
x→x0

f (x) − lim
x→x0

g(x)

4. lim
x→x0

f (x) ⋅ g(x) = lim
x→x0

f (x) ⋅ lim
x→x0

g(x) .

If furthermore lim
x→x0

g(x) ≠ 0, then

5. lim
x→x0

f (x)
g(x)

=
lim
x→x0

f (x)

lim
x→x0

g(x)
.

1.1 Continuity

Most of the functions you have met so far, have graphs which are connected.

Functions like that have such graphs are called continuous. So, a function
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is continuous (everywhere, or in an interval) if its graph has no “holes”

(in the given interval). This is a somewhat loose de�nition, but continuity

may be de�ned precisely using limits.

In example 1.6, we looked at a function whose graph was not connected

(see �gure 1.5). In the example, we showed that this function has no limit

at the point where the graph “jumps”.

However, in example 1.5 we looked at a function where the limit at a given

x was exactly equal to the function value. The graph of this function is

connected because when we approach the chosen x-value from above as

well as from below, we will get the same function value—and this function

value corresponds to a point on the graph.

We may therefore de�ne continuous functions in the following way:

De�nition 1.9

A function f is called continuous on an interval ]a; b[ if for all x0 ∈
]a; b[

lim
x→x0

f (x) = f (x0) .

Example 1.10 The function

f (x) = x2 + 4 ,

is continuous for all x ∈ ℝ.

If we choose e.g. x0 = 3, we �nd

lim
x→3

f (x) = lim
x→3

x2 + 4 = 32 + 4 = f (3) ,

and we may do this for any value of x0—not just 3.

So, f (x) is continuous.

Example 1.11 The function

f (x) =

{
x for x ≠ 3
4 for x = 3

is not continuous for all x .

We see from the graph (�gure 1.6) that

lim
x→3

f (x) = 3 ,

but

f (3) = 4 .

So, lim
x→3

f (x) ≠ f (3), and the functions is not continuous for all x .

1

1

(1)

(2)

Figure 1.6: This function is not continuous.
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1.2 Exercises

Exercise 1.1
The function f has the formula

f (x) =
x2 − 1
x − 1

.

Explain why f (1) is unde�ned.a)

Calculate f (0.9), f (0.99) og f (0.999).b)

Calculate f (1.1), f (1.01) og f (1.001).c)

Estimate the value of lim
x→1

f (x).d)

Exercise 1.2
The �gure below shows the graph of the function f :

1

1
(1)

(2)

Investigate whether the following limits exist, and de-

termine their values if they do:

lim
x→−3

f (x)a) lim
x→−1

f (x)b)

lim
x→1

f (x)c) lim
x→2

f (x)d)

Exercise 1.3
Draw the graphs of the following functions, and use the

graph to determine whether the functions have a limit

for x → 1:

f (x) =

{
3 − x for x < 1
2x for x ≥ 1

a)

g(x) =

{
2x − 1 for x < 1
3x + 1 for x ≥ 1

b)

f (x) =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

x + 3 for x < 1
5 for x = 1
2x + 2 for x > 1

c)

Exercise 1.4
Determine the following limits by calculation:

lim
x→2

x2 − 4a) lim
x→0

x2

6x
b)

lim
x→5

x2 − 10x + 25
x − 5

c) lim
x→2

x2 + 5
x2 − 3

d)

lim
x→−10

8e) lim
x→0

x −
√
x

√
x

f)

lim
x→3

x − 3
x2 − 5x + 6

g)

Exercise 1.5
Does the function

f (x) =
x
|x|

have a limit for x → 0?

Exercise 1.6
The �gure below shows the graph of the function f :

1

1
(1)

(2)

Is the function f (x) continuous at

x = −4 ?a) x = −2 ?b)

x = −1 ?c) x = 0 ?d)

x = 1 ?e) x = 3 ?f)

Does the function have a limit at these x-values?



2Derivatives

Di�erential calculus is a branch of mathematics concerned with describing

how fast a function f (x) increases for speci�c values of x . One way to

investigate this is to look at how steep the graph is at the point (x0, f (x0)).

The usual measure of “steepness” is the slope; but since only straight lines

have slopes, we need a way to express the behaviour of the graph at the

point (x0, f (x0)) as a straight line, for which we can �nd the slope.

If the graph of the function is nice and smooth, we may draw a line at each

point which lines up with the graph at this point. Such a line is called a

tangent. An illustration of this is shown in �gure 2.1.

(1)

(2)

Figure 2.1: At each point on the graph we

may draw a tangent. Here, some of the tan-

gents are illustrated by line segments.

Example 2.1 Here, we look at the function f (x) = 3x2 + 7. The graph of

this function passes through the point (5, 82). At this point, the graph has

a tangent, see �gure 2.2.

The slope of the tangent at this point is denoted by f ′(5). If we know in

advance that f ′(5) = 30, we can �nd an equation of the tangent.

The tangent is a straight line. So, the equation is y = ax + b. When we

know that f ′(5) = 30, we also know that the equation is y = 30x + b. The

point of tangency is the point P(5, 82), and therefore

82 = 30 ⋅ 5 + b ⇔ b = 82 − 30 ⋅ 5 = −68 .

So, the tangent to the graph at the point P(5, 82) has the equation

y = 30x − 68 .

1 5

10

82
1

f ′(5) = 30P

(1)

(2)

Figure 2.2: The graph f has a tangent at

the point (5, 82).

In the example above, we saw that it was possible to �nd an equation

for a given tangent when we already knew the slope of the tangent. The

question is now, how do we �nd this slope?

Of course, we might simply draw the graph and the tangent as best we

can and then simply read the slope from the drawing; but this is hardly an

exact method.

The tangents to the graph of a function are straight lines. To determine

the slope of a straight line, we need two points on the line. Here, we

have a problem: We only know one point, namely the point of tangency

P(x0, f (x0)) which is the point at which the tangent touches the graph.

11



12 Derivatives

Because we do not know the equation of the tangent, we cannot �nd

another point. The best we can do is to �nd another point on the graph

Q(x, f (x)), which is close to the point of tangency P , see �gure 2.3.

x0 x

f (x0)

f (x)

Δx

Δf

P

Q

(1)

(2)

Figure 2.3: The graph of f passes through

the two points P and Q. Q is not on the

tangent but on the secant.

If we calculate the slope using the points P(x0, f (x0)) and Q(x, f (x)), we

will not �nd the slope of the tangent, but the slope of a secant,1 which is

1
A secant is a straight line passing through

two points on the graph. It intersects the

graph rather than just touching it as a tan-

gent would.

only an approximation. The closer x is to x0, i.e. the closer Q is to P , the

better the approximation will be, since the secant in �gure 2.3 will move

closer and closer to the tangent, the closer x is to x0.

So, we can �nd an approximation of the tangent slope f ′(x0) by calculating

the slope of the line through the two points P and Q, i.e.

f ′(x0) ≈
f (x) − f (x0)
x − x0

,

where x is close to x0.

But the aim is, of course, to �nd an exact value for the tangent slope and

not just an approximation. We can do this by letting x approach x0. We

cannot just let x = x0, because if we insert x0 in place of x , we get

f (x0) − f (x0)
x0 − x0

=
0
0
,

which does not make sense. We therefore de�ne f ′(x0) to be the limit as

x → x0, i.e.

f ′(x0) = lim
x→x0

Δf
Δx

.

This limit is called the derivative of f at the point (x0, f (x0)).

Example 2.2 The graph of f (x) = 3x2 + 7 passes through the point

P(x0, f (x0)). The tangent to the graph of f at this point has slope f ′(x0). To

calculate this value, we �rst �nd the secant slope using the points P and Q,

see �gure 2.4.

x0 x

f (x0)

f (x)

P

Q

(1)

(2)

Figure 2.4: The point P is the point of tan-

gency, so P lies on the tangent as well as

on the graph. The point Q lies only on the

graph.

The point Q has the coordinates Q(x, f (x)), so Δf is:
2

2
In the calculation, we use the identity

a2 − b2 = (a + b)(a − b) .

Δf = f (x) − f (x0)
= (3x2 + 7) − (3x20 + 7)
= 3x2 − 3x20
= 3(x + x0)(x − x0)

Next, we calculate
f (x)−f (x0)
x−x0 :

f (x) − f (x0)
x − x0

=
3(x + x0)(x − x0)

x − x0
= 3(x + x0) .

The tangent slope (or the derivative) at the point is then the limit as x → x0:

lim
x→x0

f (x) − f (x0)
x − x0

= lim
x→x0

3(x + x0) = 6x0 .

We therefore conclude that for the function f (x) = 3x2 + 7,

f ′(x0) = 6x0 .

We sum up the method in the following de�nition:
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De�nition 2.3

For a function f we de�ne the derivative f ′(x0) to be

f ′(x0) = lim
x→x0

f (x) − f (x0)
x − x0

.

If this limit exists for every x in the open interval ]a; b[ , we say that

f is di�erentiable in ]a; b[ .

Since Δx = x − x0, x = x0 + Δx , and therefore

Δf = f (x) − f (x0) = f (x0 + Δx) − f (x0) .

De�nition 2.3 can therefore also be stated in this way:

De�nition 2.4: Alternative de�nition

For a function f we de�ne the derivative f ′(x0) to be

f ′(x0) = lim
x→x0

Δf
Δx

,

where Δf = f (x0 + Δx) − f (x0).

If this limit exists for every x in the open interval ]a; b[ , we say that

f is di�erentiable in ]a; b[ .

When we look at the de�nition of the derivative, we see that the calculation

of the derivative is done in three steps:

1. Calculate the function value increase Δf , and reduce this as much as

possible.

2. Calculate the di�erence quotient
Δf
Δx , and reduce as much as possible.

3. Determine the limit of
Δf
Δx as x → x0 (or Δx → 0). This is the

derivative f ′(x0).

This is sometimes called the three-step method. However, it is important to

note that because we are calculating a limit, the calculations are sometimes

quite complex, and sometimes we even need to switch the steps around.

2.1 Di�erentiability

It turns out that whenever a function is di�erentiable, it is also continuous.

So, a requirement for di�erentiability is that the graph has to be unbroken.

The opposite is not true; it is possible to �nd functions whose graphs have

no breaks, but which are not di�erentiable.

In plain terms, di�erentiability corresponds to the graph being a “smooth”

curve. The graph cannot have “kinks”. Figure 2.5 shows an example of a

function which is continuous but not di�erentiable.

−3 1 2

1
(1)

(2)

Figure 2.5: This function is not di�eren-

tiable at x = −3 og x = 2; but it is continu-

ous everywhere.

The graph has to be smooth for it to be di�erentiable because if there

are kinks, we will get di�erent tangent slopes depending on whether we
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approach the point from the left or from the right. Therefore there would

not be a well-de�ned tangent slope.

2.2 Terms and notation

De�nition 2.3 shows how to �nd the derivative f ′(x0) of a function f at

x = x0. This number describes the tangent slope at the point where x = x0.
These tangent slopes then de�ne a new function f ′(x), which has the

tangent slopes at each point on the graph as function values. This function

is also called the derivative of f .

To �nd the derivative, we look at the di�erence quotient3 Δf
Δx =

f (x)−f (x0)
x−x0 . We

3 Δf
Δx is called the di�erence quotient because

Δf and Δx are both di�erences, and the re-

sult of a division is called a quotient.

investigate what happens to this quantity as x approaches x0.

Because we let x approach x0 in the di�erence quotient, the result is some-

times also referred to as the di�erential quotient. The term derivative is

used also as a name for the function f ′, but the di�erential quotient is used

only for the function value of f ′(x) at a speci�c point.

Because the derivative is found from the di�erence quotient
Δf
Δx , we some-

times use the notation
df
dx for the derivative.

44
Note that

df
dx means exactly the same as

f ′(x). This means that the symbol
df
dx should

never be understood as a fraction; it is not

possible to separate df and dx .

So, the following statements are equivalent:

1. The derivative of f (x) = 3x2 + 7 is f ′(x) = 6x .

2. The derivative of f (x) = 3x2 + 7 is
df
dx = 6x .

And the following statements are also equivalent:

1. The di�erential quotient of f (x) = 3x2 + 7 at x = 2 is f ′(2) = 12.

2. The di�erential quotient of f (x) = 3x2 + 7 at x = 2 is
df
dx
|||x=2 = 12.

2.3 Miscellaneous derivatives

In this section, we �nd the derivatives for a number of simple functions.

Theorem 2.5

The derivative of f (x) = k, where k is a constant, is f ′(x0) = 0.

This result follows from the fact that the graph of f (x) is a line parallel to

the x-axis, i.e. a line with slope 0. Since f ′(x0) is the slope of the tangent at

the point (x0, f (x0)), and the slope of the graph is 0 everywhere, f ′(x0) = 0.
However, we also include a formal proof using de�nition 2.3:

Proof
If f (x) = k, then

Δf = f (x) − f (x0) = k − k = 0 .

Therefore

Δf
Δx

=
0

x − x0
= 0 .
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Since
Δf
Δx = 0 for any value of Δx , we will also have

Δf
Δx

→ 0 , as x → x0 .

So,

f ′(x0) = 0 . ■

Theorem 2.6

If f (x) = x , then f ′(x0) = 1.

The graph of f (x) = x is a straight line with slope 1. The theorem follows

from this fact. A formal proof using de�nition 2.3 is left as an exercise for

the reader.

Theorem 2.7

When f (x) = x2, the derivative is f ′(x0) = 2x0.

Proof
First, we calculate

Δf = f (x) − f (x0) = x2 − x20 = (x + x0)(x − x0) .

Next, we calculate the fraction
Δf
Δx

Δf
Δx

=
(x + x0)(x − x0)

x − x0
= x + x0 .

If x → x0, this expression will approach 2x0.

Therefore f ′(x0) = 2x0. ■

Theorem 2.8

When f (x) = 1
x , the derivative is f ′(x0) = − 1

x20
.

Proof
For f (x) = 1

x , we have

Δf = f (x) − f (x0)

=
1
x
−
1
x0

=
x0

x ⋅ x0
−

x
x ⋅ x0

=
−(x − x0)
x ⋅ x0

.

So,

Δf
Δx

=
−(x−x0)
x⋅x0

x − x0
=

−1
x ⋅ x0

.

When x → x0, this expression will approach
−1
x0⋅x0 =

−1
x20

, and therefore

f ′(x0) = −
1
x20

. ■
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Theorem 2.9

If f (x) =
√
x , the derivative is f ′(x0) = 1

2√x0 .

Proof
When f (x) =

√
x , we have

Δf = f (x) − f (x0) =
√
x −

√
x0 .

We cannot rewrite this expression directly, so instead we try to rewrite the

di�erence quotient
Δf
Δx . Here, we can use a clever trick:

55
We multiply by

√
x +√x0 in the numerator

and the denominator. We can then use the

rule

(a − b)(a + b) = a2 − b2 .
Δf
Δx

=
√
x − √x0
x − x0

=
(
√
x − √x0) ⋅ (

√
x + √x0)

(x − x0) ⋅ (
√
x + √x0)

=
(
√
x)2 − (√x0)2

(x − x0) ⋅ (
√
x + √x0)

=
x − x0

(x − x0) ⋅ (
√
x + √x0)

=
1

√
x + √x0

.

This expression has the limit lim
x→x0

1
√
x + √x0

=
1

√x0 +
√x0

, i.e.

f ′(x0) =
1

2√x0
. ■

Table 2.6 lists further examples of derivatives.

Table 2.6: Various functions and their

derivatives.

f (x) f ′(x)

k 0

x 1

x2 2x
x3 3x2

xn nxn−1
1
x

−
1
x2

√
x

1
2
√
x

ex ex
ekx k ekx
ax ln(a) ⋅ ax

ln(x)
1
x Example 2.10 According to theorem 2.9, the derivative of f (x) =

√
x is

given by f ′(x0) = 1
2√x0 . Since f ′(x) is the slope of the tangent to the graph,

we can calculate that the tangent to the graph at the point P(4, 2) has the

slope

f ′(4) =
1
2
√
4
=

1
2 ⋅ 2

=
1
4
.

This is shown in �gure 2.7.

So, the tangent is a straight line with slope y = 1
4x + b. If we want to �nd

the equation of this line, we can insert the point of tangency P(4, 2) into

the equation:

2 = 1
4 ⋅ 4 + b ⇔ b = 1 .

Therefore, at the point P(4, 2), the graph of f (x) =
√
x has a tangent with

the equation

y = 1
4x + 1 ,

which is also shown in �gure 2.7.

1 4

1

2
P(4; 2)

f (x) =
√
x

y = 1
4x + 1

(1)

(2)

Figure 2.7: The graph of f (x) =
√
x has a

tangent with the equation y = 1
4x + 1 at the

point P(4, 2).
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2.4 Sum and di�erence

As it turns out, it is not necessary to use the method described in the

previous sections, every time we want to �nd the derivative f (x0) of a

given function f . It is su�cient to know the derivatives of a number of

simple functions like the ones described above. Calculation rules exist,

which we can use to �nd the derivative of a function f which is “built from”

simpler functions.

Theorem 2.11

Let p be a di�erentiable function and c a constant, and let the function

f be given by f (x) = c ⋅ p(x). Then

f ′(x0) = c ⋅ p′(x0) .

Proof
If f (x) = c ⋅ p(x), then

Δf = c ⋅ p(x) − c ⋅ p(x0)
= c ⋅ (p(x) − p(x0)) = c ⋅ Δp .

I.e.

Δf
Δx

=
c ⋅ Δp
Δx

= c ⋅
Δp
Δx

.

If we let x → x0, then
Δp
Δx → p′(x0), and therefore c ⋅ ΔpΔx → c ⋅ p′(x0). So,

f ′(x0) = c ⋅ p′(x0) ,

which proves the theorem ■

This example demonstrates how to use the theorem:

Example 2.12 According to theorem 2.7, the derivative of p(x) = x2 is

given by p′(x0) = 2x0. But what is the derivative of f (x) = 7x2?

Here, we can use theorem 2.11. If f (x) = 7x2, then

f (x) = c ⋅ p(x) , where c = 7 and p(x) = x2 .

Because we already know the derivative of p(x) = x2, according to theo-

rem 2.11, we get

f ′(x0) = c ⋅ p′(x0) = 7 ⋅ 2x0 = 14x0 .

So, we can �nd the derivative of f (x) = 7x2 quite easily, as long as we know

the derivative of x2.

Example 2.13 If we want to �nd the derivative of f (x) = 4x3, we write

f (x) as f (x) = 4 ⋅ p(x), where p(x) = x3.

The table of derivatives tells ud that p′(x0) = 3x20 . According to theorem 2.11,

we then have

f ′(x0) = 4 ⋅ p′(x0) = 4 ⋅ 3x20 = 12x
2
0 .
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Theorem 2.14

Let p and q be two di�erentiable functions, and let f (x) = p(x) + q(x).
Then

f ′(x0) = p′(x0) + q′(x0) .

Proof
We use de�nition 2.3 and �rst calculate

Δf = f (x) − f (x0) = (p(x) + q(x)) − (p(x0) − q(x0))
= p(x) − p(x0) + q(x) − q(x0)
= Δp + Δq .

Then we get

Δf
Δx

=
Δp + Δq
Δx

=
Δp
Δx

+
Δq
Δx

.

If we let x → x0, then
Δp
Δx → p′(x0) and

Δq
Δx → q′(x0), which means that

f ′(x0) = p′(x0) + q′(x0) . ■

Theorem 2.15

Let p and q be two di�erentiable functions, and let f (x) = p(x) − q(x).
Then

f ′(x0) = p′(x0) − q′(x0) .

This theorem can be proven in the exact same way as theorem 2.14. There-

fore, the proof is left as an exercise for the reader.

Example 2.16 The theorems 2.11, 2.14 and 2.15 may be combined when

we di�erentiate more complicated functions.

The function

f (x) = 4x2 + 5 ln(x) − 3x

is a combination of the simpler functions x2, ln(x), and x , which are all

listed in table 2.6.

If we use theorem 2.14 and 2.15, we get

f ′(x) = (4x2)
′ + (5 ln(x))′ − (3x)′ .

We can then use theorem 2.11, so

f ′(x) = 4 ⋅ (x2)
′ + 5 ⋅ (ln(x))′ − 3 ⋅ (x)′ .

Next, we �nd the derivatives of x2, ln(x), and x in the table. We then have

f ′(x) = 4 ⋅ 2x + 5 ⋅
1
x
− 3 ⋅ 1 ,

which we can reduce to

f ′(x) = 8x +
5
x
− 3 .
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2.5 Products and inner linear functions

If we look at the theorems we have proven so far, we might get the im-

pression that we can always di�erentiate complicated functions by simply

di�erentiating their individual components. However, this is not the case,

as the next theorem clearly shows.

Theorem 2.17: The product rule

Let p and q be two di�erentiable functions, and let f (x) = p(x) ⋅ q(x).
Then

f ′(x0) = p′(x0) ⋅ q(x0) + p(x0) ⋅ q′(x0) .

Proof
When f (x) = p(x) ⋅ q(x),

Δf = f (x) − f (x0)
= p(x) ⋅ q(x) − p(x0) ⋅ q(x0) .

We want to rewrite this expression, so that it contains both Δp and Δq. To

this end, we use a trick: We subtract the term p(x0) ⋅ q(x) and then add it

again. This does not change the expression:

Δf = p(x) ⋅ q(x) − p(x0) ⋅ q(x0)
= p(x) ⋅ q(x) −p(x0) ⋅ q(x) + p(x0) ⋅ q(x)⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

the sum of these two terms is 0

−p(x0) ⋅ q(x0) .

Next, we can factor the expression like this:

Δf = (p(x) − p(x0)) ⋅ q(x) + p(x0) ⋅ (q(x) − q(x0))
= Δp ⋅ q(x) + p(x0) ⋅ Δq .

Then we have

Δf
Δx

=
Δp ⋅ q(x) + p(x0) ⋅ Δq

Δx
=
Δp
Δx

⋅ q(x) + p(x0) ⋅
Δq
Δx

.

If we now let Δx → 0,

Δp
Δx

→ p′(x0)

q(x) → q(x0)
p(x0) → p(x0)
Δq
Δx

→ q′(x0) .

In total, we then get

lim
x→x0

Δf
Δx

= p′(x0) ⋅ q(x0) + p(x0) ⋅ q′(x0) ,

and therefore

f ′(x0) = p′(x0) ⋅ q(x0) + p(x0) ⋅ q′(x0) . ■
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Example 2.18 If we want to �nd the derivative of f (x) =
√
x ⋅ ln(x), we

write f (x) as f (x) = p(x) ⋅ q(x), where

p(x) =
√
x, q(x) = ln(x).

Looking at a table of derivatives, we get

p′(x) =
1

2
√
x
, q′(x) =

1
x
.

Theorem 2.17 then implies

f ′(x) = p′(x) ⋅ q(x) + p(x) ⋅ q′(x)

=
1

2
√
x
⋅ ln(x) +

√
x ⋅

1
x
.

We can reduce this further:

f ′(x) =
ln(x)
2
√
x
+

1
√
x

⇒ f ′(x) =
ln(x) + 2
2
√
x

.

In many di�erent contexts, we see functions which are composed of a

simple function and an inner linear function. This might be functions like

f (x) =
√
2x − 3 and g(x) = e3x+10 .

In these cases, we can �nd the derivative in the following way:

Theorem 2.19

Let p be a di�erentiable function, and let f (x) = p(ax + b), where a
and b are two constants. Then

f ′(x0) = a ⋅ p′(ax0 + b) .

We will not prove this theorem, instead we provide some examples of how

it is used:

Example 2.20 What is the derivative of f (x) = ln(7x − 5). This function

can be written as p(ax + b), where p(t) = ln(t); the derivative of ln(t) is
1
t .

According to theorem 2.19, the derivative of f is then

f ′(x) = 7 ⋅
1

7x − 5
=

7
7x − 5

.

Example 2.21 The derivative of g(x) =
√
8x + 3 is

g′(x) = 8 ⋅
1

2
√
8x + 3

,

which reduces to

g′(x) =
8

2
√
8x + 3

=
4√

8x + 3
.

The derivative of ℎ(x) = 5 ⋅ (2x − 1)3 is

ℎ′(x) = 2 ⋅ 5 ⋅ 3 ⋅ (2x − 1)2 = 30 ⋅ (2x − 1)2 .
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2.6 Composite functions and quotients

Theorem 2.19 deals with a special case of composite functions, i.e. functions

like

f (x) = (ln(x))2 , g(x) =
√
x3 + 4 ,

ℎ(x) = e6x+x
2

, k(x) = ln(x2 + ex ) .

The function f is a composite function because we can write it as f = p◦q,
6 6

Remember that f = p◦q means that f (x) =
p(q(x)) for all x .

where the two functions p and q are the functions

p(q) = q2 and q(x) = ln(x) ,

We call p the outer function and q the inner function.

When we want to di�erentiate functions such as these, we can use the

following theorem:

Theorem 2.22: The chain rule

Let p and q be di�erentiable functions, and let f = p◦q. Then

f ′ = (p′◦q) ⋅ q′ .

When we read this theorem, we need to remember that f ′ = (p′◦q) ⋅ q′ is a

short-form notation, which means that

f ′(x) = p′(q(x)) ⋅ q′(x)

for all values of x .

Proof
If f (x0) = (p◦q)(x0), then

Δf
Δx

=
f (x) − f (x0)
x − x0

=
(p◦q)(x) − (p◦q)(x0)

x − x0
.

Because (p◦q)(x) = p(q(x)), we may write this as

Δf
Δx

=
p(q(x)) − p(q(x0))

x − x0
=
p(q(x)) − p(q(x0))
q(x) − q(x0)

⋅
q(x) − q(x0)
x − x0

.

Now we let q = q(x) and q0 = q(x0), so we can write this as

Δf
Δx

=
p(q) − p(q0)
q − q0

⋅
Δq
Δx

. (2.1)

We then examine the two factors on the right hand side independently.

The fraction
p(q)−p(q0)
q−q0 may be written as

Δp
Δq , where it is implied that p is a

function of q. I.e.

p(q) − p(q0)
q − q0

→ p′(q0) , as x → x0 .
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For the fraction
Δq
Δx , we have

Δq
Δx

→ q′(x0) , as x → x0 .

In total, we get from equation (2.1) that

Δf
Δx

→ p′(q0) ⋅ q′(x0) , as x → x0 .

Now, we remember that q0 = q(x0), which means we can write this as

p′(q(x0)) ⋅ q′(x0), i.e.

f ′ = (p′◦q) ⋅ q′ . ■

Example 2.23 A function f is given by the formula f (x) =
√
x2 + 3. Thus,

f can be written as f (x) = (p◦q)(x), where

p(q) = √q og q(x) = x2 + 3 .

We di�erentiate these two functions:

p′(q) =
1

2√q
and q′(x) = 2x .

Theorem 2.22 then gives us

f ′(x) = p′(q) ⋅ q′(x)

=
1

2√q
⋅ 2x

(∗)=
1

2
√
x2 + 3

⋅ 2x

At (∗) we replace q by x2 + 3 because q(x) = x2 + 3.

We can reduce this expression further to get

f ′(x) =
1

2
√
x2 + 3

⋅ 2x =
x√
x2 + 3

.

Example 2.24 A function f is given by the formula f (x) = ex2 . To be able

to di�erentiate f , we write this formula as f (x) = (p◦q)(x), where

p(q) = eq , q(x) = x2 .

A table of derivatives yields

p′(q) = eq , q′(x) = 2x .

Theorem 2.22 then gives us

f ′(x) = p′(q) ⋅ q′(x) = eq ⋅ 2x = ex
2
⋅ 2x .

The theorems 2.17 and 2.22 may also be used to prove a theorem about the

derivative of a quotient of functions. We have the following theorem:
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Theorem 2.25: The quotient rule

Let p and q be di�erentiable functions where q(x) ≠ 0 for all x , and let

f = p
q . Then

f ′ =
p′ ⋅ q − p ⋅ q′

q2
.

Proof
f (x0) = (

p
q) (x0) can be written as

f (x0) =
p(x0)
q(x0)

= p(x0) ⋅
1

q(x0)
= p(x0) ⋅ (

1
q)

(x0) .

This is a product of two functions, so according to theorem 2.17, we have

f ′(x0) = p′(x0) ⋅ (
1
q)

(x0) + p(x0) ⋅ (
1
q)

′

(x0)

=
p′(x0)
q(x0)

+ p(x0) ⋅ (
1
q)

′

(x0) . (2.2)

To continue this calculation, we need to investigate (
1
q)

′
(x0). This is the

derivative of a composite function. Using theorem 2.22, we get
7 7

The function (
1
q) is a composite of s(q) =

1
q and q(x). We then use that

s′(q) = −
1
q2

.(
1
q)

′

(x0) = −
1

q(x0)2
⋅ q′(x0) .

If we insert this result into (2.2), we get

f ′(x0) =
p′(x0)
q(x0)

+ p(x0) ⋅ (−
1

q(x0)2
⋅ q′(x0))

=
p′(x0)
q(x0)

−
p(x0) ⋅ q′(x0)

q(x0)2

=
p′(x0) ⋅ q(x0)

q(x0)2
−
p(x0) ⋅ q′(x0)

q(x0)2

=
p′(x0) ⋅ q(x0) − p(x0) ⋅ q′(x0)

q(x0)2
,

So, f ′ = p′⋅q−p⋅q′
q2 . ■

Example 2.26 Let f (x) = x2
ex . We �nd the derivative f ′(x) by writing

f (x) = (
p
q) (x), where

p(x) = x2 , q(x) = ex .

Then

p′(x) = 2x , q′(x) = ex .

Now, theorem 2.25 gives us

f ′(x) =
p′(x) ⋅ q(x) − p(x) ⋅ q′(x)

(q(x))2
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=
2x ⋅ ex − x2 ⋅ ex

(ex )2
.

We can reduce this further and �nd

f ′(x) =
2x − x2

ex
.

Functions exist, where we cannot use just one of the theorems 2.17, 2.22

and 2.25. Sometimes we need to combine them.

Here, we show an elaborate example:

Example 2.27 A function is given by the formula

f (x) =
1√

x2 ⋅ ln(x)
, x > 1 .

How do we di�erentiate this function?

First, we write f (x) = (p◦q)(x) where

p(q) =
1
q
, q(x) =

√
x2 ⋅ ln(x) .

Here, we can easily di�erentiate p(q), but what about q(x)? We split this

further: q(x) = (s◦t)(x) where

s(t) =
√
t , t(x) = x2 ⋅ ln(x) .

Now, we need to di�erentiate t . We do this by writing t as t(x) = (n ⋅m)(x),

n(x) = x2 , m(x) = ln(x) .

Here,

n′(x) = 2x , m′(x) =
1
x
.

According to theorem 2.17, we then get

t′(x) = n′(x) ⋅ m(x) + n(x) ⋅ m′(x) = 2x ⋅ ln(x) + x2 ⋅
1
x
.

Next, we reduce this to t′(x) = 2x ⋅ ln(x) + x .

Now, we have everything we need, and we can begin to work our way

backwards through the many parts of the function:

q′(x) = (s′◦t)(x) ⋅ t′(x) =
1
2
√
t
⋅(2x ⋅ ln(x)+x) =

1
2
√
x2 ⋅ ln(x)

⋅ (2x ⋅ ln(x)+x) .

This reduces to

q′(x) =
2x ⋅ ln(x) + x
2
√
x2 ⋅ ln(x)

.

Lastly, we therefore �nd

f ′(x) = (p′◦q)(x) ⋅ q′(x) = −
1
q2

⋅
2x ⋅ ln(x) + x
2
√
x2 ⋅ ln(x)
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= −
1

(
√
x2 ⋅ ln(x))

2 ⋅
2x ⋅ ln(x) + x
2
√
x2 ⋅ ln(x)

.

This then reduces to

f ′(x) = −
2 ln(x) + 1

2x2 ⋅ ln(x) ⋅
√
ln(x)

.

Using the theorems 2.11–2.25 and a table of derivatives allows us to dif-

ferentiate any function. We therefore conclude this section by collecting

these theorems:

Theorem 2.28

We can use the following rules to determine a derivative:

f = c ⋅ p ⇒ f ′ = c ⋅ p′ .
f = p + q ⇒ f ′ = p′ + q′ .
f = p − q ⇒ f ′ = p′ − q′ .
f = p ⋅ q ⇒ f ′ = p′ ⋅ q + p ⋅ q′ .
f = p◦q ⇒ f ′ = (p′◦q) ⋅ q′ .

f =
p
q

⇒ f ′ =
p′ ⋅ q − p ⋅ q′

q2
.

2.7 Trigonometric functions

The trigonometric functions sin, cos, and tan are also di�erentiable. When

we treat sin and cos as mathematical functions, we need to remember that

x is always measured in radians.

For sin and cos, we have the following:

Theorem 2.29

For the trigonometric functions sin and cos we have

1. If f (x) = sin(x), then f ′(x0) = cos(x0).

2. If f (x) = cos(x), then f ′(x0) = − sin(x0).

So, the functions sin and cos are almost each other’s derivatives. Note,

however, that we get a minus sign when we di�erentiate cos.

To prove the theorem, we look at the unit circle because the de�nitions of

sin and cos are based on the unit circle. Here, we only prove the �rst part

of the theorem.

Proof
Figure 2.8 shows a section of the unit circle with an arbitrary length of

arc x0. sin(x0) and cos(x0) are marked on the axes. The large marked

triangle has a hypotenuse of 1, and the horizontal leg will have the length

a = cos(x0).
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(2)

(1)

x0

Δx

c = 1

a′ c′

sin(x0 + Δx)

sin(x0)

cos(x0)

a = cos(x0)

Figure 2.8: A section of the unit circle.

The two marked triangles are almost similar

when Δx is small. I.e.
a′
c′ ≈

a
c .

When Δx is small, we also have Δx ≈ c′.

If we add a small length of arc Δx , we can mark out a new triangle. Here,

the hypotenuse is c′ ≈ Δx , as long as Δx is small. The vertical leg has a

length of a′.

To determine f ′(x0) when f (x) = sin(x), we �rst look at

Δf = f (x0 + Δx) − f (x0) = sin(x0 + Δx) − sin(x0) .

In the �gure, we see that this corresponds to the line segment a′, i.e.

Δf = a′.

As stated, Δx ≈ c′, and so

Δf
Δx

=
a′

Δx
≈
a′

c′
.

If Δx is small, the two hypotenuses are almost perpendicular. Then, the

two marked triangles are almost similar, and we therefore have

a′

c′
≈
a
c
.

This means that

Δf
Δx

≈
a
c
,

as long as Δx is small. And the smaller Δx is, the better the approximation.

If we then let Δx → 0, we get

f ′(x0) =
a
c
=
cos(x0)
1

= cos(x0) . ■

A corresponding geometric proof for the derivative of cos is left as an

exercise for the reader.
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Example 2.30 Figure 2.9 shows the graph of f (x) = x + 2 sin(x). What is

the derivative of f ?

1

1
(1)

(2)

Figure 2.9: The graph of f (x) = x +2 sin(x).

We know that the derivative of x is 1, and the derivative of sin(x) is cos(x)
(according to theorem 2.29). Therefore,

f ′(x) = 1 + 2 cos(x) .

Example 2.31 To �nd the derivative of f (x) = 5 ⋅ sin(3x − 2), we need to

use the rule from theorem 2.19. We can write f as

f (x) = p(3x − 2) ,

where p(t) = 5 ⋅ sin(t), i.e. p′(t) = 5 ⋅ cos(t)

According to theorem 2.19, we then have

f ′(x) = 3 ⋅ 5 ⋅ cos(3x − 2) = 15 ⋅ cos(3x − 2) .

We can use theorem 2.29 and theorem 2.25 to prove the following theorem.

Theorem 2.32

The derivative of f (x) = tan(x) is f ′(x) = 1
cos(x)2 .

Proof
From the de�nition of tan we have

f (x) = tan(x) =
sin(x)
cos(x)

.

According to theorem 2.25, the derivative is therefore

f ′(x) =
(sin(x))′ ⋅ cos(x) − sin(x) ⋅ (cos(x))′

cos(x)2
,

and using theorem 2.29, we can write
8 8

In the calculation, we use that

cos(x)2 + sin(x)2 = 1 ,

which follows from the de�nition of cos and

sin.

f ′(x) =
cos(x) ⋅ cos(x) − sin(x) ⋅ (− sin(x))

cos(x)2

=
cos(x)2 + sin(x)2

cos(x)2

=
1

cos(x)2
. ■
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2.8 Exercises

Exercise 2.1
The �gure shows the graph of a function f as well as

the tangents to the graph of f at x = −3 and x = 2.

1

1
(1)

(2)

Use the graph to determine f ′(−3) and f ′(2).a)

Exercise 2.2
Determine, by drawing the graphs, whether the follow-

ing functions are di�erentiable at x = 2:

f (x) =

{
4x − 2 for x < 2
x2 for x ≥ 2

a)

g(x) = |x − 2|b)

Exercise 2.3
Determine the derivative f ′(x0) of f (x) = 2x2 − x using

the three-step method.

Exercise 2.4
The �gure shows the graph of f . Find the values of x ,

for which this function is not di�erentiable.

1

1
(1)

(2)

Exercise 2.5
Use the three-step-method to determine the derivative

f ′(x0) of f (x) = x2 + 3x .

Next, determine

f ′(1)a) f ′(−4)b)

df
dx

c)

df
dx

||||x=5
d)

Exercise 2.6
Determine the derivatives of the following functions:

f (x) = 4x − 1a) g(x) = x2 − xb)

ℎ(x) = 5x −
√
xc) k(x) = 3ex − x3 + 2xd)

Exercise 2.7
Determine the value of the derivative f ′(x0), when

f (x) = 5x − ln(x) and x0 = 1a)

f (x) = x2 − 6
√
x and x0 = 9b)

f (x) =
4
x
+
x2

4
and x0 = 2c)

f (x) = x4 − 2x3 + x2 − 8x and x0 = 3d)

f (x) =
ln(x)
4

−
x2

6
and x0 = 1e)

Exercise 2.8
Prove theorem 2.15.

Exercise 2.9
Di�erentiate the following functions:

f (x) = x ⋅ exa) g(x) = x2 ⋅ ln(x)b)

ℎ(x) = 4x2 ⋅
√
xc) k(x) = 3x ⋅ (ex − 1)d)

Exercise 2.10
Determine

df
dx when

f (x) = 4
√
x ⋅ ln(x)a) f (x) =

√
x ⋅ (

√
x − 1)b)

f (x) =
1
x
⋅
√
xc) f (x) = (ex +1)⋅(x2−3)d)

Exercise 2.11
Determine the derivatives of the following functions:

f (x) = (3x − 1)2a) g(x) = e2x+9b)

ℎ(x) =
√
7x − 5c) k(x) = 4 ⋅ ln(3 − x)d)
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Exercise 2.12
Determine at which values of x , the following functions

have a tangent with slope 3.

f (x) = x2 − xa) g(x) = ln(x) − 2b)

ℎ(x) =
√
3x + 1c) k(x) = 3

8−xd)

Exercise 2.13
The functions f and g are given by

f (x) = 2x − 1 and g(x) = 2
√
x − 3 .

Determine

(f g)′(x)a) (f ◦g)′(x)b) (g◦f )′(x)c)

Exercise 2.14
Determine the derivatives of the following functions:

f1(x) =
√
x2 − 4a) f2(x) = ln(x2 + 1)b)

f3(x) = ln(x)3c) f4(x) = (ex + 4)2d)

f5(x) = 4 ⋅
√
ln(x) − 3e) f6(x) = 1

x3+x2−5f)

Exercise 2.15
Di�erentiate the following functions:

f (x) =
ex

4x
a) g(x) =

3x
ln(x)

b)

ℎ(x) =
x2

4 + x
c) k(x) =

5 − x2
√
x

d)

Exercise 2.16
Determine the derivatives of the following functions:

f (x) =
√
2x − 1
3x

a)

g(x) = ln (
x − 7
x )b)

ℎ(x) =
√
x ⋅

ex

x2 − 1
c)

k(x) =
√

x − 3
x2 + 3

d)

Exercise 2.17
The graph of the function f passes through the point

(2, 3), and the graph of the function g passes through

(2, −1). Furthermore, f ′(2) = −4 and g′(2) = 5.

Determine

(3f )′(2)a) (f + g)′(2)b)

(f g)′(2)c) (
f
g)

′
(2)d)

Exercise 2.18
The graph of the function f has a tangent with slope

6 at the point (2, 3), and the function g is given by the

formula

g(x) = ln(f (x) − 5) .

Determine g′(2).

Exercise 2.19
Determine the derivative of each of these functions:

f1(x) = sin(x) + cos(x)a)

f2(x) = sin(x) ⋅ cos(x)b)

f3(x) = sin(x)2c)

f4(x) = cos(4x − 5)d)

f5(x) = x ⋅ sin(x)e)

f6(x) =
sin(x)
5 − x

f)

f7(x) =
√
x ⋅ sin(x)g)

f8(x) = 4 cos(
√
x + 2)h)

Exercise 2.20
The trigonometric function sec (secant) is de�ned by

sec(x) =
1

cos(x)
, x ≠ nπ .

Show that

(sec)′(x) =
tan(x)
cos(x)

and (sec)′(x) = sec(x) ⋅ tan(x) .

Exercise 2.21
Di�erentiate the following functions:

f (x) =
√
sin(x)2 + 1a) g(x) =

sin(x) − 1
cos(x)

b)

ℎ(x) = sin(x3)c) k(x) = sin(cos(x))d)

Exercise 2.22
Determine the derivative of f ′ (π2 ) when

f (x) =
cos(x) + 1
sin(x)

a)

f (x) =
√
cos(x) + 1b)

f (x) = sin(x)3c)

f (x) = cos(sin(x) − 1)d)

f (x) =
sin(x) + 1

cos(x) + sin(x)
e)
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The value of the derivative is equal to the tangent slope at a given point on

the graph. If we know the tangent slope and a point, we can determine an

equation for the tangent. A few examples are given below.

Example 3.1 The function f (x) = x2 + 4x + 6 has a tangent at the point

P(−1, f (−1)). What is the equation of this tangent?

The tangent is a straight line, so it can be described by the equation y =
ax + b. We therefore need to �nd the two numbers a and b to be able to

write down the equation. a is the tangent slope, which is given by f ′(x),
and therefore we begin by determining f ′(x):

f ′(x) = 2x + 4 ⋅ 1 + 0 = 2x + 4 .

The x-coordinate of the point is x0 = −1, so the tangent slope is

f ′(−1) = 2 ⋅ (−1) + 4 = 2 ,

and the equation of the tangent is y = 2x + b.

−4 −2 2 4

−2

2

4

6

8

(−1, 3)

(1)

(2)

Figure 3.1: The graph of f (x) = x2 + 4x + 6
has a tangent with equation y = 2x + 5 at

the point P(−1, 3).

To determine the whole equation, we need to know the point of tangency.

The x-coordinate is x0 = −1, and the y-coordinate is

y0 = f (−1) = (−1)2 + 4 ⋅ (−1) + 6 = 1 − 4 + 6 = 3 .

Thus the point of tangency is (−1, 3). We insert this point into the equation

of the tangent, i.e.

3 = 2 ⋅ (−1) + b ⇔ b = 5 .

So, the equation of the tangent is

y = 2x + 5 .

Figure 3.1 shows the graph and the tangent.

Example 3.2 The function g(x) = 3x + ln(x) has a tangent at the point

P(1, f (1)).

To determine an equation for the tangent, we �rst determine

g′(x) = 3 +
1
x
.

31
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The slope of the tangent is then

a = f ′(1) = 3 +
1
1
= 4 ,

and the equation becomes y = 4x + b.

To determine b we calculate the y-coordinate of the point of tangency:

y0 = f (1) = 3 ⋅ 1 + ln(1) = 3 ,

and we insert this number as well as the x-coordinate x0 = 1 into the

equation of the tangent:

3 = 4 ⋅ 1 + b ⇔ b = −1.

Therefore, the equation of the tangent is

y = 4x − 1 .

As the two previous examples show, we use the same method every time

we determine an equation of a tangent at a given point. This method can

be turned into a formula, as the following theorem shows:

Theorem 3.3

Let a di�erentiable function f (x) be given. Then the tangent to the

graph of f at the point P(x0, f (x0)) has the equation

y = f ′(x0) ⋅ (x − x0) + f (x0) .

Proof
The tangent is a straight line, so its equation is y = ax+b. Because the value

of f ′(x) equals the tangent slope, and the point of tangency is P(x0, f (x0)),
the slope of the tangent is

a = f ′(x0) .

So, we can write the equation of the tangent as

y = f ′(x0) ⋅ x + b . (3.1)

To determine the y-axis intercept b, we insert the known point
1 P(x0, f (x0))1

Remember that the graph of f and the tan-

gent both pass through P(x0, f (x0)), i.e. this

point has to �t into the equation.

into the equation of the tangent and solve for b:

f (x0) = f ′(x0) ⋅ x0 + b ⇔ b = −f ′(x0) ⋅ x0 + f (x0) .

Next, we insert this expression for b into the tangent equation (3.1), and

we get

y = f ′(x0) ⋅ x − f ′(x0) ⋅ x0 + f (x0) ,

and by factoring, we get the equation

y = f ′(x0) ⋅ (x − x0) + f (x0) . ■

Here, we provide a few examples on how to use the formula:
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Example 3.4 The function f (x) = 3x2 + 10 has a tangent at the point

P(5, f (5)). To determine an equation for this tangent, we use the formula

y = f ′(x0) ⋅ (x − x0) + f (x0)

with x0 = 5, i.e.

y = f ′(5) ⋅ (x − 5) + f (5) .

Before we can use this formula, we need to know f ′(x):

f ′(x) = 3 ⋅ 2x + 0 = 6x .

Then we calculate

f ′(5) = 6 ⋅ 5 = 30
f (5) = 3 ⋅ 52 + 10 = 85 .

Inserting these numbers into the formula, we get

y = 30 ⋅ (x − 5) + 85 ,

which reduces to

y = 30x − 65 .

Example 3.5 The function g(x) = (7x + 1) ⋅ ex has a tangent at the point

P(0, g(0)).

The tangent has the equation

y = g′(0) ⋅ (x − 0) + g(0) = g′(0) ⋅ x + g(0) .

We now �nd
2 2

We di�erentiate the function using the

product rule, theorem 2.17.

g′(x) = 7 ⋅ ex + (7x + 1) ⋅ ex = (7x + 8) ⋅ ex .

I.e.

g′(0) = (7 ⋅ 0 + 8) ⋅ e0 = 8 ⋅ 1 = 8
g(0) = (7 ⋅ 0 + 1) ⋅ e0 = 1 ⋅ 1 = 1 .

When we insert this into the expression above, we get the equation

y = 8x + 1 .

3.1 Determining points of tangency

If we know the formula of a function and a point on the graph, we can

determine an equation of the tangent to the graph at this point. But it is

equally possible to work backwards and �nd the point of tangency if we

know an equaiton of the tangent.

In this section, we show a few examples:
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Example 3.6 A function is given by the formula f (x) = −x2 + 3x + 1.

The graph of the function has a tangent with equation y = x + 2. Where

on the graph do we �nd the point of tangency of this tangent?

The derivative of f is

f ′(x) = −2x + 3 ,

and the value of this function is equal to the tangent slope at each point

on the graph.

1

1

(1, 3)

(1)

(2)

Figure 3.2: The tangent y = x + 2 touches

the graph of f (x) = −x2 + 3x + 1 at the point

(1, 3).

The tangent, of which we know the equation, has slope 1, i.e. f ′(x) = 1 at

the point of tangency. This gives us the equation

−2x + 3 = 1 ⇔ x = 1 .

So, the point of tangency has the x-coordinate 1. Now, we need to �nd the

y-coordinate, which is

f (1) = −12 + 3 ⋅ 1 + 1 = 3 .

Therefore, the point of tangency has the coordinates (1, 3), see �gure 3.2.

Example 3.7 The function f is given by

f (x) = x −
4
x
+ 3 , x > 0 .

The graph of f has a tangent with slope 2. Where is the point of tangency

for this tangent, and what is its equation?

Since f ′(x) equals the tangent slope, we need to determine when f ′(x) = 2.

Therefore, we �rst �nd f ′(x),

f ′(x) = 1 +
4
x2

, x > 0 .

Next, we solve the equation f ′(x) = 2,

1 +
4
x2

= 2 ⇔
4
x2

= 1 ⇔ x = −2 ∨ x = 2 .

There are two solutions to this equation, but because f (x) is only de�ned

for x > 0, we discard the negative solution. So, the x-coordinate of the

point of tangency is x = 2.

The y-coordinate of the point of tangency is

f (2) = 2 −
4
2
+ 3 = 3 ,

and the point of tangency has the coordinates (2, 3), see �gure 3.3.

1

2 (2, 3)
(1)

(2)

Figure 3.3: The graph of f (x) = x − 4
x + 3

has a tangent with slope 2 at the point (2, 3). So, according to theorem 3.3, the equation of the tangent is given by

y = f ′(2) ⋅ (x − 2) + f (2) ,

but because we already know the slope of the tangent, f ′(2) = 2, and have

calculated f (2) = 3, this equation becomes

y = 2 ⋅ (x − 2) + 3 ,

which reduces to

y = 2x − 1 .
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Example 3.8 The graph of the function f (x) = x3 − 3x2 − 21x + 5 has two

tangents with slope 3. What are the points of tangency for these tangents?

The slope of the tangents is 3, i.e. f ′(x) = 3. To solve this equation, we �rst

need to determine f ′(x),

f ′(x) = 3x2 − 3 ⋅ 2x − 21 ⋅ 1 = 3x2 − 6x − 21 .

The equation f ′(x) = 3 is the quadratic equation

3x2 − 6x − 21 = 3 ⇔ 3x2 − 6x − 24 = 0 .

If we solve this equation, we �nd the two solutions

x = −2 ∨ x = 4 .

So, the two points of tangency are (−2, f (−2)) og (4, f (4)). We can now

determine the two y-coordinates

f (−2) = (−2)3 − 3 ⋅ (−2)2 − 21 ⋅ (−2) + 5 = 27
f (4) = 43 − 3 ⋅ 42 − 21 ⋅ 4 + 5 = −63 .

Therefore, the two points of tangency are (−2, 27) and (4, −63). At these

two points, the graph of f has tangents with slope 3.

If we want to �nd the equations of these two tangents, we can use the same

method as in example 3.7.

Example 3.9 In example 3.8, we saw that the graph of f (x) = x3 − 3x2 −
21x + 5 has two tangents with slope 3. Is there a slope a, so that the graph

has exactly one tangent with this slope?

This question is more complicated, but because we �nd the point of tan-

gency of the tangents by solving the equation f ′(x) = a for a speci�c slope

a, we can rephrase the question as: Does a number a exist, so that the

equation

f ′(x) = a (3.2)

has exactly one solution?

From example 3.8, we have

f ′(x) = 3x2 − 6x − 21 .

so equation (3.2) becomes

3x2 − 6x − 21 = a ⇔ 3x2 − 6x − 21 − a = 0 .

This is a quadratic equation. If this equation is to have exactly one solution,

its discriminant must be equal to 0. The discriminant of this equation is
3 3

Remember that the discriminant is d =
B2 − 4AC , where A, B and C are the coe�-

cients of the equation. (We writeA, B and C ,

because the coe�cient of the second degree

term cannot be denoted by a, since this is

the tangent slope.)

d = (−6)2 − 4 ⋅ 3 ⋅ (−21 − a) = 36 − 12 ⋅ (−21 − a) = 288 + 12a .

If this must equal 0, then

288 + 12a = 0 ⇔ 12a = −288 ⇔ a = −24 .

So, the graph has exactly one tangent with slope a = −24.

Actually, we can examine the discriminant further and �nd that when

a > −24, the graph has two tangents with slope a, whereas the graph has

no tangents with slope a when a < −24.
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Example 3.10 In this example, we look at the graph of the function f (x) =
x2 + 3x + 6. How many of the tangents to the graph also pass through the

point P(2, 7)?

Answering this question is quite complicated, because the point P is not on

the graph. Figure 3.4 depicts this situation; here we see that two tangents

to the graph of f pass through the point P .

According to theorem 3.3, the equation of the tangent is

y = f ′(x0) ⋅ (x − x0) + f (x0) .

The problem is now to �nd the points of tangency for those tangents which

pass through P(2, 7). We can �nd the points of tangency if we know the

their x-coordinates, x0, so we need to �nd these coordinates.

1

10
P(2, 7)

(1)

(2)

Figure 3.4: The graph of f (x) = x2 + 3x + 6
has two tangents passing through P(2, 7).

We know that the tangents pass through the point P(2, 7), so these coordi-

nates have to �t into the equation of the tangent, i.e. we have

7 = f ′(x0) ⋅ (2 − x0) + f (x0) . (3.3)

To solve this equation, we need to know f ′(x), so we di�erentiate f :

f ′(x) = 2x + 3 .

We insert this and the formula of the function itself into the equation (3.3),

and we get

7 = (2x0 + 3) ⋅ (2 − x0) + (x20 + 3x0 + 6) ,

which reduces to

7 = −2x20 + x0 + 6 + x
2
0 + 3x0 + 6 ,

which we can reduce further to arrive at the quadratic equation

x20 − 4x0 − 5 = 0 .

This equation has the solution

x0 = −1 ∨ x0 = 5 .

Because there are two points of tangency, there are two tangents. The

y-coordinates of the points of tangency and the equations of the tangents

can then be found by the same method as the one we used in example 3.4.
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3.2 Exercises

Exercise 3.1
Determine an equation for the tangent to the graph of

the given function at the given point:

f (x) = x2 + 1 , (3, 10)a)

g(x) = 3x − x2 , (1, 2)b)

ℎ(x) = 2 ln(x) + 5 , (1, 5)c)

Exercise 3.2
Determine an equation for the tangent to the graph of

the given function at the given point:

f (x) = x3 + x2 − 4 , (1, f (1))a)

g(x) = ex − 4x , (0, g(0))b)

ℎ(x) = 8
√
x + 3x , (4, ℎ(4))c)

Exercise 3.3
Determine an equation for the tangent to the graph of

the given function at the given point:

f (x) = ex ⋅ (x2 + 1) , (0, f (0))a)

g(x) =
√
3x + 1 , (5, g(5))b)

Exercise 3.4
The graph of the function f (x) = x2 + 5x has a tangent

with slope 3.

Determine the point of tangency of this tangent.

Exercise 3.5
The graph of the function g(x) = x3 − x2 + x + 4 has two

tangents with slope 1.

Determine the points of tangency of these tangents, and

determine an equation for each of the tangents.

Exercise 3.6
The function f is given by the formula

f (x) = x2 − 5x + 7 .

The graph of the function has a tangent t at the point

P(2, f (2)).

Determine an equation for t .a)

The graph has another tangent s which is perpendicular

to t .

Determine the point of tangency for s.b)

Determine an equation for s.c)

Exercise 3.7
A tangent to the graph of f (x) =

√
2x + 10 has its point

of tangency at (x0, 4).

Determine x0.a)

Determine an equation for the tangent.b)

Exercise 3.8
The function f given by

f (x) =
x − 1
x2 + 3

has two horizontal tangents.

Determine the points of tangency for these two tan-

gents.

Exercise 3.9
The function f is given by

f (x) =
1

1 − x
.

For two values of k, the line with equation y = x + k is

a tangent to the graph of f .

Determine the two values of k.a)

Exercise 3.10
The function f is given by

f (x) = x3 + 3x2 − 4x + 1 .

The graph of f has exactly one tangent with slope a.

Determine the value of a.a)

Exercise 3.11
The function f is given by

f (x) = x2 + 3x − 6 .

The graph of f has two tangents passing through the

point P(2, −5), which is not on the graph.

Determine an equation for each of these tangents.a)

Exercise 3.12
A normal line is a line which is perpendicular to the

tangent at the point of tangency.

Determine an equation for the normal line to the graph

of

f (x) =
1 − x
x2 + 1

at the point P(1, f (1)).





4Monotonicity and
turning points

If a function behaves in such a way that its function values increase when-

ever the independent variable increases, we call the function increasing.

If, on the other hand, the function values decrease when the independent

variable increases, the function is called decreasing.

Formally, we have the following de�nition:

De�nition 4.1

Let a function f be de�ned in an interval.

1. If for any arbitrary pair of numbers x1, x2 in this interval we

have

x1 ≤ x2 ⇒ f (x1) ≤ f (x2) ,

the function is said to be decreasing in this interval.

2. If for any arbitrary pair of numbers x1, x2 in this interval we

have

x1 ≤ x2 ⇒ f (x1) ≥ f (x2) ,

the function is said to be decreasing in this interval.

Note that the de�nition concerns the functions behaviour in intervals. If

we look only at a point, it does not make sense to talk about whether

the function is increasing or decreasing. The properties increasing and

decreasing therefore apply to intervals, not points.

Example 4.2 The graph of the function f (x) = 2x + 1 is a straight line

with positive slope. Therefore, this function is increasing.

On the other hand, a straight line with a negative slope is decreasing (e.g.

the function f (x) = −4x + 3.)

A function which is increasing or decreasing everywhere, is called a

monotonous function. However, not all functions are monotonous. Many

functions exist, which are increasing in some intervals and decreasing in

others.

When we describe where a function is increasing and where it is decreasing,

we describe the function’s properties of monotonicity. We �nd the properties
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of monotonicity by dividing the x-axis into the intervals in which the

function is increasing and those in which it is decreasing.

Example 4.3 Figure 4.1 shows the graph of the function

f (x) = x2 − 4x + 1 .
1

1
x = 2

f

(1)

(2)

Figure 4.1: The graph of f (x) = x2 − 4x + 1.

A vertical line is also drawn at x = 2. We see that the function is decreasing

to the left side of the line and increasing to the right.

So, the properties of monotonicity of this function are that f (x) is decreasing

when x ≤ 2, and increasing when x ≥ 2.

In example 4.3, we determined the properties of monotonicity by looking at

the graph. We can always draw the graph of a given function and determine

the properties of monotonicity this way, but our precision will be limited.

Therefore, we need a method to calculate from the formula of the function

where the graph changes from decreasing to increasing or vice versa.

From example 4.2, we have that when the graph of a function is a straight

line, its properties of monotonicity is determined by the slope. If the slope

is positive, the functions is increasing, and when it is negative, the function

is decreasing.

The tangents of a function are straight lines, and their slopes are determined

by f ′(x), wherefore the following theorem is intuitively true:

Theorem 4.4

When the function f is di�erentiable, we have:

1. If f is increasing in the interval [a; b], then f ′(x) ≥ 0 for all

x ∈ ]a; b[ .

2. If f is decreasing in the interval [a; b], then f ′(x) ≤ 0 for all

x ∈ ]a; b[ .

3. If f is constant in the interval [a; b], then f ′(x) = 0 for all x ∈
]a; b[ .

Note here that when f (x) is increasing, the tangent slope is not necessarily

strictly positive in the entire interval. It is allowed to be 0 in some places.

This follows from de�nition 4.1, where we do not demand that f (x1) is

greater than f (x2) when x1 ≤ x2, but merely that it is greater than or equal
to. So, increasing as well as decreasing functions can be constant in an

interval.
11

Actually, according to de�nition 4.1, a con-

stant function is simultaneously increasing

and decreasing. This might seem contradic-

tory, but it is true nonetheless.

Theorem 4.4 may be used to determine the properties of f ′(x) when we

already know if the function is increasing or decreasing. Usually, we would

instead like to determine the properties of monotonicity based on our

knowledge of f ′(x). Here, we have the following theorem:
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Theorem 4.5: Monotonisætningen

For a di�erentiable function f , we have:

1. If f ′(x) > 0 for all x in an interval ]a; b[ , then f is increasing in

[a; b].

2. If f ′(x) < 0 for all x in an interval ]a; b[ , then f is decreasing in

[a; b].

3. If f ′(x) = 0 for all x in an interval ]a; b[ , then f is constant in

[a; b].

So, if we want to determine the properties of monotonicity of a function

f , we need to investigate f ′ to determine when the value of f ′(x) changes

from positive to negative or vice versa.

If f ′(x) changes from positive to negative, the value of f ′(x) must pass

through 0. So, we need to �nd out when f ′(x) = 0. This is illustrated in the

following example:

Example 4.6 Here, we look again at the function from example 4.3,

f (x) = x2 − 4x + 1 .

To �nd out when the graph changes from increasing to decreasing, we

need to �nd out where f ′(x) = 0. First, we therefore determine f ′(x),

f ′(x) = 2x − 4 .

1 2

1

f ′(x) = 0

f ′(x) > 0f ′(x) < 0

(1)

(2)

Figure 4.2: The graph of f (x) = x2 − 4x + 1
is decreasing before x = 2 and increasing

after x = 2. At x = 2, we have a horizontal

tangent.

The equation f ′(x) = 0 then becomes

2x − 4 = 0 ⇔ x = 2 .

At x = 2 the graph has a tangent with slope 0, i.e. a horizontal tanget. This

is also shown in �gure 4.2.

On the graph, we see that the function is decreasing before x = 2 and

increasing after x = 2. If we do not have the graph, we need to determine

the sign of f ′(x) by calculation.

If we want to know whether f ′(x) is positive or negative when x < 2, we

choose a number less than 2, which we insert into the formula for f ′. A

number less than 2 might be e.g. 0. Then we get

f ′(0) = 2 ⋅ 0 − 4 = −4 .

Because −4 < 0, we know that f ′(x) is negative for all x < 2, i.e. f is

decreasing in this interval.
2 2

We know that f ′(x) is only 0 when x = 2.
Therefore, the value of f ′(x) will have the

same sign for all numbers x < 2, and it is

only necessary to investigate the sign of

f ′(x) for one number less than 2; here we

chose x = 0.

We also choose a number greater than 2, e.g. 3, and calculate

f ′(3) = 2 ⋅ 3 − 4 = 2 > 0 .

So, f ′(x) is positive for x > 2, and therefore f (x) is increasing for these

values of x .

In total, the properties of monotonicity of f are that f (x) is decreasing for

x ≤ 2 and increasing for x ≥ 2.3 3
The numbers 0 and 3, which we used to

determine the sign of f ′(x) are not part of

the properties of monotonicity. They are

merely two arbitrary numbers less than and

greater than 2, which we used to determine

the sign of f ′(x) when x is less than/greater

than 2.
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4.1 Sign table

A sign table is a tool often used to sum up calculations, before we present

the properties of monotonicity. For the function in example 4.6, a sign table

could look like this:

x ∶

f ′(x) ∶
f (x) ∶

2

0

min.

−
↘

+
↗

This �gure shows that before x = 2, f ′(x) < 0, and after x = 2, f ′(x) > 0.
This is shown by the − and + signs in the �gure. In the last line, we see

that this corresponds to f (x) being decreasing and increasing (illustrated

by the two arrows ↘ and ↗).

Using the sign table, we can easily present the properties of monotonicity.
44

Note that the sign table is not the same

as the properties of monotonicity, but that

the properties of monotonicity may be read

from the sign table.

But we can also see something else. At x = 2 the function f has a minimum,

i.e. a point on the graph where the function value has its lowest possible

value.

We see from the table that it is a minimum because the function is �rst

decreasing and then increasing. In this case, it is actually a global minimum

because it is the lowest point on the entire graph. A minimum which is

not global is called a local minimum. In the same way, we refer to global

and local maxima. Figure 4.3 illustrates this.

local

minimum

local

maximum

global

minimum

(1)

(2)

Figure 4.3: Functions may have global as

well as local turning points.

A collective term for these points on the graph is turning points (or extrema).

So, a turning point is a point on the graph which is either a maximum or a

minimum (local or global).

Example 4.7 In this example, we determine the properties of monotonic-

ity and the turning points of the function f (x) = x3 − 6x2 + 9x + 1.

The derivative is

f ′(x) = 3x2 − 12x + 9 ,

i.e. the equation f ′(x) = 0 is the quadratic equation

3x2 − 12x + 9 = 0 ,

which has the solutions x = 1 and x = 3.

These two solutions divides the number line into three intervals: The

numbers less than 1, the numbers between 1 and 3, and the numbers

greater than 3. Now, we choose a number from each of these intervals to

determine the signs of f ′(x) in each of them:

x < 1 ∶ f ′(0) = 3 ⋅ 02 − 12 ⋅ 0 + 9 = 9 > 0
1 < x < 3 ∶ f ′(2) = 3 ⋅ 22 − 12 ⋅ 2 + 9 = −3 < 0

x > 3 ∶ f ′(5) = 3 ⋅ 52 − 12 ⋅ 5 + 9 = 24 > 0

This allows us to write a sign table:
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x ∶

f ′(x) ∶
f (x) ∶

1

0

max.

3

0

min.

+
↗

−
↘

+
↗

From this sign table we �nd the properties of monotonicity:

f (x) is increasing for x ≤ 1 and for x ≥ 3, and decreasing for

1 ≤ x ≤ 3.

Because we know that the intervals of monotonicity are separated at x = 1
and x = 3, we can also �nd the properties of monotonicity by looking at

the graph (see �gure 4.4) instead of writing the sign table.

1

1

(1)

(2)

Figure 4.4: The graph of f (x) = x3 − 6x2 +
9x + 1 has a local maximum and a local min-

imum.

From the sign table, we can also see that there are two local turning points.

One of them is a local maximum at x = 1, the other is a local minimum at

x = 3.

We �nd the y-coordinates of the two turning points,

f (1) = 13 − 6 ⋅ 12 + 9 ⋅ 1 + 1 = 5
f (3) = 33 − 6 ⋅ 32 + 9 ⋅ 3 + 1 = 1 .

So, the function f has a local maximum at (1, 5) and a local minimum at

(3, 1).

Example 4.8 In this example, we determine possible turning points of the

function

f (x) = 6 ⋅
√
x − 2x , x > 0 .

The graph of this function is shown in �gure 4.5. We see that the function

appears to have a global maximum near x = 2.

1

1

(1)

(2)

Figure 4.5: The graph of f (x) = 6 ⋅
√
x − 2x

appears to have a global maximum.

To determine whether the function has a global maximum, we �rst deter-

mine

f ′(x) = 6 ⋅
1

2 ⋅
√
x
− 2 ⋅ 1 =

3
√
x
− 2 .

The equation f ′(x) = 0 then becomes

3
√
x
− 2 = 0 ⇔ 2

√
x = 3 ⇔ x = (

3
2)

2
=
9
4
.

So, there is a possible turning point at x = 9
4 .

We want to write a sign table, so we look at f ′(x) for x < 9
4 and for x > 9

4 .
5 5

It is also important to remember that the

function is only de�ned for x > 0, so we can-

not use 0 or negative numbers as x-values.

0 < x < 9
4 ∶ f ′(1) =

3√
1
− 2 = 1 > 0

x > 9
4 ∶ f ′(9) =

3√
9
− 2 = −1 < 0

Therefore, the sign table looks like this



44 Monotonicity and turning points

x ∶

f ′(x) ∶
f (x) ∶

9
4

0

maks.

+
↗

−
↘

0

The hatched region illustrates that the function is only de�ned for x > 0.

Using the sign table, we see that the graph is increasing until x = 9
4 , and

then decreasing. So, the function has a global maximum at x = 9
4 . The

y-coordinate of this maximum is

f (
9
4)

= 6 ⋅
√
9
4
− 2 ⋅

9
4
= 6 ⋅

3
2
−
9
2
=
9
2
.

Thus, the function has a global maximum at ( 94 ,
9
2).

4.2 In�ectional tangents

If we look at the previous examples, it might seem that whenever a graph

has a horizontal tangent, it changes from increasing to decreasing or vice

versa. However, this is not always this case as demonstrated by the next

example.

Example 4.9 Here, we look at the function

f (x) = x3 − 12x2 + 48x − 62

to determine its properties of monotonicity.

First, we determine f ′(x):

f ′(x) = 3x2 − 12 ⋅ 2x + 48 ⋅ 1 = 3x2 − 24x + 48 ,

and then we solve f ′(x) = 0, which is the quadratic equation

3x2 − 24x + 48 = 0 .

This equation has only one solution, which is

x = 4 .

Next, we determine the sign of f ′(x) for x < 4 and for x > 4,

x < 4 ∶ f ′(0) = 3 ⋅ 02 − 24 ⋅ 0 + 48 = 48 > 0
x > 4 ∶ f ′(5) = 3 ⋅ 52 − 24 ⋅ 5 + 48 = 3 > 0 .

Then, the sign table looks like this

x ∶

f ′(x) ∶
f (x) ∶

4

0

?

+
↗

+
↗
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f ′(4) = 0, so we have a horizontal tangent at x = 4, but we have neither a

maximum nor a minimum, because the function is increasing both before

x = 4 and after x = 4. Figure 4.6 illustrates this situation.

1

1
(1)

(2)

Figure 4.6: At the point (4, f (4)) the graph

of f (x) = x3−12x2+48x−62 has an in�ection

point.

In this case, we say that the graph has a horizontal in�ectional tangent, and

the point is called a horizontal in�ection point. Therefore, the sign table

looks like this,

x ∶

f ′(x) ∶
f (x) ∶

4

0

in�.

+
↗

+
↗

and the function f is increasing for all values of x .

When we look at �gure 4.6, we see clearly that something happens to the

graph at the in�ection point. The curvature of the graph changes. In the

�gure, we see that the graph looks like before the in�ection point, and

after the in�ection point.

So, a horizontal in�ection point is a point where the graph changes its

curvature. At this point, the graph also has a horizontal tangent, the

so-called in�ectional tangent mentioned above.

4.3 Summary of the method

We conclude this section with a general description of how to determine

properties of monotonicity and turning points for a given function f (x):

1. Determine f ′(x).

2. Solve the equation f ′(x) = 0. The solutions show where we have

possible turning points.
6 6

Remember that a solution might also cor-

respond to an in�ection point.

3. The solutions to the equation f ′(x) divides the x-axis into a series of

intervals. Determine the sign of f ′(x) for each of these by inserting

some number from the interval into the formula of f ′(x).
We can also choose to draw the graph to investigate how the function
behaves in the intervals of monotonicity. In this case, this calculation
and the sign table are unnecessary.

4. Draw a sign table.

5. Use the sign table to write a conclusion. If we want to determine a

maximum or a minimum, we must remember to also calculate the

y-coordinate of the point.
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4.4 Exercises

Exercise 4.1
The �gure below shows the graph of the function f (x).

1

1
(1)

(2)

Find the function’s properties of monotonicity.

Exercise 4.2
Determine the properties of monotonicity of the follow-

ing functions:

f1 (x) = ln(x) − x + 3 , x > 0a)

f2 (x) = −x3 − 3x2 + 9xb)

f3 (x) = 5x − ex , −4 ≤ x ≤ 8c)

f4 (x) = −x3 + 4x2 + 3x − 3d)

f5 (x) = 1
4x

4 − 2x3 + 4x2 + 3e)

f6 (x) = x +
16
x

f)

f7 (x) = 4
√
x − 1

2x
2 , x ≥ 0g)

f8 (x) = −x3 + 3x2 + 4h)

Exercise 4.3
Determine the local turning points of the functions in

exercise 4.2.

Exercise 4.4
Draw the graph of the function f (x) = −x3+4x2+3x −3,

and determine what the number a should be for the

equation f (x) = a to have exactly 3 solutions.

Exercise 4.5
Determine the properties of monotonicity and the turn-

ing points of the following functions. Pay attention to

whether the function is de�ned for all values of x .

f1(x) = 3x2 − 6x + 7.a)

f2(x) = ln(x) − 1
2x

2
.b)

f3(x) = x3 + 3x2 − 9x + 2c)

f4(x) =
1

2x − 4
.d)

f5(x) = 6
√
x − 2x .e)

f6(x) = x3 − 12x , x ∈ [−1; 10].f)

Exercise 4.6
The function f is given by

f (x) = −2x3 − 4x .

Use the derivative to argue that f is a decreasing func-

tion.

Exercise 4.7
The function g is given by

g(x) = x2 .

Use the derivative to argue that g is not a monotonous

function.

Exercise 4.8
Below a sign table is shown for the function f .

x ∶

f ′(x) ∶

−2

0

1

0+ − +

Draw a possible graph for this function.



5Optimisation

In the last chapter, we described how to �nd the turning points of a function.

We can use this method to optimise a given quantity. The purpose of

optimisation is to �nd out when some given quantity is as large or as small

as possible.

If the quantity we wish to optimise is given as a function of one variable,

all we need to do is determine the maximum or the minimum. However,

things are not always this simple. E.g. if we want to determine when a

given area is as large as possible, the area might depend on both a length

and a width. If this is the case, we need to know how the length and the

width are connected.

How we actually do this depends very much on the given situation, and is

most easily illustrated by examples.

Example 5.1 In a garden, we want to build a fence around a chicken coop

(see �gure 5.1). One side of the garden is walled, so we need only fence

3 sides of a rectangle. If we have 20 m of fence, how should we build the

fence, so the enclosure has the largest possible area?

x

y

x

Figure 5.1: A fence around a chicken coop.

One side of the area is walled.

The length and the width of the rectangle, which make up the chicken

coop, we call x and y, see �gure 5.1. The total length of the fence must

then correspond to the length of the three sides, i.e. 2x + y . Since our fence

is 20 m, we have

2x + y = 20 .

Isolating y in this equation yields

y = 20 − 2x .

The area of the rectangle is A = x ⋅ y , and this is the quantity that needs to

be as large as possible. The quantity depends on two variables, x , and y , so

we cannot determine the largest value straight away. But we just found

out that y = 20 − x , therefore this area may also be calculated as

A = x ⋅ y = x ⋅ (20 − 2x) = 20x − 2x2 ,

and this expression only depends on x .
1 1

Notice that 0 < x < 10. We have x > 0
because x is a length, and we have x < 10
because we only have 20 m of fence. The

two sides with length x must therefore have

a total length of less than 20 m. This means

that solutions for x which are not in the

interval from 0 to 10, must be discarded.

Where does this area have a maximum? To �nd the possible turning points

of the function, we employ the method used in the previous chapter, i.e.

we solve A′ = 0.
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Since A = 20x − 2x2, we get

A′ = 20 ⋅ 1 − 2 ⋅ 2x = 20 − 4x ,

So, the equation A′ = 0 is

20 − 4x = 0 ⇔ x = 5 .

Now we know that there is a possible maximum for the area at x = 5. We

graph A = 20x − 2x2 (see �gure 5.2), and here we clearly see that x = 5
corresponds to a maximum.

1 5

5

50

x

A

Figure 5.2: At x = 5, we have the largest

area.

Therefore, the area has a maximum at x = 5. This then gives us y = 10, and

the area A = 50, which we also see in the �gure.

Example 5.2 We want to build a cylindrical container with a volume of

1 litre and use as little material as possible. We can assume that the used

material has the same thickness every—which means that we use the least

amount of material, when the surface area is as small as possible.

A cylinder can be described by two parameters: Its radius r (at the top and

the bottom) and its height ℎ, see �gure 5.3. Since the volume is measured

in litres, and 1 l = 1 dm3
, r and ℎ are measured in decimetres.

ℎ

r

Figure 5.3: A cylinder can be described by

its height and radius.

The volume of a cylinder is

V = πr2ℎ ,

and since the volume is 1 l, we have

πr2ℎ = 1 ⇔ ℎ =
1
πr2

. (5.1)

The surface area of a cylinder is

A = 2πr2 + 2πrℎ .

If we insert the expression for ℎ from (5.1), we get

A = 2πr2 + 2πr ⋅
1
πr2

= 2πr2 +
2
r
.

Now, the area is a function of r . Where the area is smallest, we have A′ = 0.

Since

A′ = 4πr −
2
r2

,

we therefore have the equation

4πr −
2
r2
= 0 ,

which has the solution

r = 3

√
1
2π

≈ 0.54 dm .

That this is indeed a minimum can be seen in �gure 5.4.

0.1 0.54

2

5.54

x

A

Figure 5.4: We have the smallest surface

area, when the radius is 0.54 dm.
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When we know the radius, r = 0.54 dm, we can calculate the height, since

equation (5.1) gives us

ℎ =
1

π ⋅ 0.542
= 1.08 dm .

A cylindrical container with a volume of 1 l, therefore, has the least surface

area, when the radius is r = 0.54 dm and the height is ℎ = 1.08 dm.

Example 5.3 In a garden, we want to plant a 10 m2
�ower bed. The shape

of the �ower bed is a �gure made of a rectangle and a half circle, see

�gure 5.5.

We want to place decorative stones around the edge of the �ower bed, so

we want to minimise the perimeter. In that case, what are then the lengths

of x and r in the �gure?

x

x

2r

r

Figure 5.5: A 10 m2
�ower bed is made up

of a rectangle and a half circle.

The �ower bed is made up of a rectangle with sides x and 2r , and a half

circle, with radius r . Its area is then

A = 2r ⋅ x +
πr2

2
.

Since the area is 10 m2
, this is equal to 10. Next, we isolate x .

2rx +
πr2

2
= 10 ⇔ x =

5
r
−
πr
4
. (5.2)

We want to minimise the perimeter. Since the perimeter consists of three

straight lines and a half circle, the perimeter is

O = 2r + 2x + πr .

We insert the expression for x from (5.2) into this expression for the perime-

ter, and we get

O = 2r + 2 ⋅ (
5
r
−
πr
4 ) + πr = (2 +

π
2)

r +
10
r
.

To minimise this expression, we di�erentiate and �nd

O′ = 2 +
π
2
−
10
r2

.

We set this equal to 0, and get the equation

2 +
π
2
−
10
r2

= 0 ,

which has the solution

r =
10√

20 + 5π
≈ 1.67 m .

To �nd out, if this really is a minimum, we construct a sign table for O′
for

values of x greater than or less than 1.67.

0 < r < 1.67 ∶ O′(1) = 2 +
π
2
−
10
12

= −6.43 < 0

r > 1.67 O′(2) = 2 +
π
2
−
10
22

= 1.07 > 0

The sign table looks like this
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x ∶

f ′(x) ∶
f (x) ∶

1.67

0

min.

−
↘

+
↗

0

and we have a minimum, when the radius of the circle r = 1.67 m.

The length x is then (we use the result from (5.2))

x =
5
1.67

−
π ⋅ 1.67
4

= 1.67 m .

5.1 Summary of the method

The method we used in the examples above can be described in the follow-

ing way.

1. Translate a condition (e.g. �xed perimeter, �xed area, �xed volume)

into an equation. Then isolate one of the variables in this equation.

2. Write down an expression for the quantity you wish to optimise, and

replace one of the variables with the expression found in step 1. You

now have a function of one variable.

3. Determine the turning points of the function found in step 2. Now,

you can determine the remaining measurements.

In principle, it is possible to have more than two variables in the expression,

we wish to optimise. Then we need more than one condition to write the

expression as a function of one variable. This corresponds to repeating

steps 1–2.

5.2 Exercises

Exercise 5.1
If x + y = 64, what is the largest possible value of x ⋅ y?

Exercise 5.2
A rectangular area is to be fenced o� by 400 m of fence.

The area has to be as large as possible. Determine the

length and the width of the area.

Exercise 5.3
A box has a volume of 1200 cm3

. The box has a square

bottom and no lid.

Determine the volume of the box if it is built using the

least amount of materials.

Exercise 5.4
A piece of cardboard is folded into a box by cutting away

a square at each corner (see �gure).

20 cm

30 cm

x
x

x

Determine the value of x , so that the volume of the box

is as large as possible.
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Exercise 5.5
Two numbers x and y satisfy the equation x + y = 10.

What must x and y be for x2 + y2 to be as large

as possible?

a)

What must x and y be for x2 + y2 to be as small

as possible?

b)

Exercise 5.6
We want to build a box where the sides at the bottom

are in a ratio of 1:3. The material for the top and the

bottom costs £6 per m
2
, and the material for the sides

costs £8 per m
2
.

Determine the dimensions of the box if it costs £50 and

has the largest possible volume.

Exercise 5.7
A soda can is shaped like a cylinder. The can contains

330 ml (1 ml = 1 cm3
).

What would the dimensions of the can be if we

just want to minimise the surface area?

a)

In reality, a soda can is not a perfect cylinder. Some

extra material is used to make the opening at the top,

and the bottom is not �at, but curved. We can simulate

this by assuming that the top and the bottom have a

di�erent thickness compared to the side. (A real soda

can is actually about 11.5 cm tall with a diameter of

approximately 6.4 cm.)

What would the dimensions be if the top and the

bottom are twice as thick as the side, and we want

to use the least amount of material?

b)

What else might be taken into consideration,

when a soda can is designed?

c)

Exercise 5.8
A rectangular warehouse is to be built with a �oor area

of 5000 square metres. The warehouse will be divided

into two rectangular rooms by means of an inner wall.

It costs £600 per metre to build the outer walls and £350

per metre to build the inner wall.

Find the dimensions of the warehouse, so that the cost

of building it is as low as possible.

Exercise 5.9
A 50 cm string is cut into two pieces. One of the pieces

is shaped like a circle and the other as a square.

Where should we cut the string if the combined

area of the two �gures is to be as large as possible?

a)

Where should we cut the string if the combined

area of the two �gures is to be as small as possible?

b)

Exercise 5.10
A rectangle is inscribed in a half circle with radius 10

(see �gure).

r = 10

Determine the dimensions of the rectangle if its area is

to be as large as possible.

Exercise 5.11
A house is 10 m wide and its roof pitch is 45° (see �gure).

On the �rst �oor, a rectangular glass section is to be

built.

x

45°

What is the height x if the glass section is to be

as large as possible?

a)

What is x if the roof pitch is 50°?b)

Exercise 5.12
A company sets up a model for their production of x
units of a speci�c product. In the model, O(x) denotes

the combined cost (in DKK) of production, and p(x) de-

notes the price (DKK per unit) the product must have

for all units to be sold.

It turns out that

O(x) = 0, 0025 ⋅ x2 + 106

and

p(x) = −0, 007x + 1400 ,

where x is the number of units sold.

Find an expression for the total turnover A(x).a)

Find an expression for the pro�t F (x), i.e. the

turnover minus the cost.

b)

How many units does the company need to pro-

duce for the pro�t to be as large as possible?

c)
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Exercise 5.13
An oil rig (B) is placed 17 km from the coast. A pipe line

must be built from the oil rig to a re�nery (R), which

lies 45 km away along the coast (see �gure).

R
x

C

B

D

17 km

45 km

It is more expensive to build a pipeline under water than

on land. The question is now where along the coast (at

point C) the pipeline should hit the shore for the total

cost to be minimised.

If it is twice as expensive to build a pipeline under

water than on land, what is then the value of x?

a)

Exercise 5.14
Two poles are placed 10 m apart. The poles are stabilised

by a wire attached to the ground at a point between the

two poles. Some of the measurements are shown in the

�gure below.

x 10 m − x

10 m

8 m
6 m

Determine the value of x which minimises the length

of the wire.
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Using di�erentiation, we may �nd out where certain quantities have max-

ima and minima. This can, for instance, be used for optimisation. But we

can also use di�erentiation to determine how fast certain quantities grow

at certain points.

We have the following de�nition.
1 1

Note that in this de�nition, the indepen-

dent variable is called t instead of x . In prin-

ciple, we could have used x , but we use t to

emphasise that we are talking about time.
De�nition 6.1

Let f (t) be a function, where t is the time. Then f ′(t) is the rate of
change at the time t .

Example 6.2 In �gure 6.1, we see the graph of f (t), which shows us how

the amount of sparrows on a certain island increases over time (measured

in years).

5

50

(40, 440)

t (years)

Number of sparrows

Figure 6.1: The population of sparrows at

time t (in years).

In the �gure, we see the graph passing through the point (4, 440). We have

also drawn a tangent through this point—the slope of the tangent is 5.25.

In other words

f (40) = 440 and f ′(40) = 5.25 .

This is a purely mathematical description, which may be translated into

1. After 40 years, there are 440 sparrows on the island.

2. After 40 years, the amount of sparrows increases at a rate of 5.25

sparrows per year.

Example 6.3 A jug of lukewarm water is put into a refrigerator. The

temperature of the water can then be described by the function

f (t) = 5 + 15 ⋅ e−0.01⋅t ,

where the time t is measured in minutes.

From this function, we can determine the rate of change f ′(45). First we

calculate

f ′(t) = 0 + 15 ⋅ (−0.01) ⋅ e−0,01⋅t = −0.15 ⋅ e−0.01⋅t ,

and then

f ′(45) = −0.15 ⋅ e−0.01⋅45 = −0.096 .

53
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What does this number tell us?

First of all, we notice that the number is negative, i.e. the temperature is

decreasing. The value of the number shows us how much. Since f ′(45) =
−0.096, we have the following interpretation:

After 45 minutes in the refrigerator, the temperature of the water decreases

at a rate of 0.096◦C per minute.

6.1 Exercises

Exercise 6.1
A new year’s rocket is �red vertically upwards. The

height ℎ of the rocket (measured in metres) as a function

of the time t (measured in seconds) may be described

by the model

ℎ(t) = −4.9 ⋅ t2 + 45t , 0 ≤ t ≤ 4.5 .

What is the speed of the rocket after 1 s?a)

What is the speed of the rocket after 2 s?b)

What is the speed of the rocket when it has

reached a height of 75 m?

c)

Exercise 6.2
A patient is given an injection of a certain type of

medicine. At the time t (measured in hours after in-

jection), the concentration c (in ng/L) of the medicine

in the bloodstream can be described by the model

c(t) = 120 ⋅ 0.87t .

Determine the number c′(2), and give an interpre-

tation of this number.

a)

At what time does the medicine concentration

decrease at a rate of 3 ng/L per second?

b)
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In this section, we show how to �nd the derivatives of ln(x), ex , ax and xn.

To �nd the �rst of these, we use the three-step method—the rest are found

using the rules in sections 2.4 and 2.5.

This will prove the last of the claims in table 2.6.

Theorem A.1

If f (x) = ln(x), the derivative is f ′(x) = 1
x .

Proof
Here, we use the three-step method. First, we �nd

1 1
In this calculation, we use the rule

ln(a) − ln(b) = ln (
a
b )

.
Δf = ln(x + Δx) − ln(x) = ln(

x + Δx
x ) = ln(1 +

Δx
x ) .

Next, we look at

Δf
Δx

=
ln (1 + Δx

x )
Δx

=
1
Δx

⋅ ln(1 +
Δx
x ) . (A.1)

We cannot simplify this further.

Now, we need to let Δx → 0, but the expression (A.1) is too complicated to

see what that gives us. We therefore use a little trick: We introduce a new

variable t , which is equal to
Δx
x . Letting Δx → 0 corresponds to letting

t → 0.

(A.1) can now be rewritten as

Δf
Δx

=
1
xt

⋅ ln(1 + t) ,

which then corresponds to

Δf
Δx

=
1
x
⋅
1
t
⋅ ln(1 + t) =

1
x
⋅ ln ((1 + t)

1
t ) . (A.2)

It is well-known that[2]

(1 + t)
1
t → e when t → 0 . (A.3)

Actually, this is sometimes used as the de�nition of the number e. We are

not going to prove the result in (A.3), but that it is correct may be inferred

from the graph of (1 + t)
1
t shown in �gure A.1.

1

1

e

(1)

(2)

Figure A.1: The graph of (1 + t) 1t .
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Now, letting Δx → 0 is the same as letting t → 0 in (A.2), and using the

result from (A.3), we get

f ′(x) =
1
x
⋅ ln(e) =

1
x
. ■

Theorem A.2

When f (x) = ex , the derivative is f ′(x) = ex .

Proof
Since ex is the inverse of ln(x), we have the following equation:

ln(ex ) = x . (A.4)

If we di�erentiate both sides of this equation, it will still hold.

On the left hand side, we need to di�erentiate a composite function, and

we get
22

Here, it is important to remember that we

do not yet know the derivative of ex . There-

fore, we must write (ex )′, which is the same

as f ′(x).

(ln(ex ))′ =
1
ex

⋅ (ex )′ =
1
ex

⋅ f ′(x) .

On the right hand side we get

(x)′ = 1 .

Since the left hand side is equal to the right hand side, we have

1
ex

⋅ f ′(x) = 1 ⇔ f ′(x) = ex . ■

Theorem A.3

If f (x) = ax , where a > 0, then f ′(x) = ln(a) ⋅ ax .

Proof
We can rewrite the function f as

f (x) = ax = (eln(a))
x
= eln(a)⋅x .

This is a composite function, and its derivative is

f ′(x) = eln(a)⋅x ⋅ ln(a) = ax ⋅ ln(a) = ln(a) ⋅ ax . ■

Theorem A.4

If f (x) = xn, the derivative is f ′(x) = nxn−1.

Proof
First, we rewrite the formula for f (x):

f (x) = xn = eln(x
n) = en⋅ln(x) .
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So, f can be written as a composite function, where the outer function is

p(q) = eq ,

and the inner function is

q(x) = n ⋅ ln(x) ,

where n is a constant.

If we di�erentiate the outer function, we get

p′(q) = eq .

The inner function yields

q′(x) = n ⋅
1
x
.

So,

f ′(x) = p′(q) ⋅ q′(x) = eq ⋅ n ⋅
1
x

= en⋅ln(x) ⋅ n ⋅
1
x
= xn ⋅ n ⋅

1
x

= n ⋅ xn−1 . ■
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