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1What is a function?

In mathematics, a function is a formalisation of a relationship between

variables. If the value of a variable y depends on the variable x , y is said to

be a function of x . This means that to every possible value of x we assign

exactly one value of y; the number we get when we send x through the

function.

We may describe functions as a machine where x’s are put in at one end,

and the output at the other end of the machine are the y’s (see �gure 1.1).

f

x

y

Figure 1.1: The function f interpreted as a

kind of machine.

More formally, we say that a function is a relation between elements of

one set X and the elements of another set Y , such that for each element

x ∈ X we have exactly one corresponding element f (x) ∈ Y . We say that

f (x) is the image of the element x .
1

1
It is important to remember that the paren-

thesis in f (x) does not denote multiplica-

tion, but instead denotes the element we

get when we send x through the function f .

The easiest way to visualise a function is to draw its graph. The graph of a

function is a curve containing all points (x, y) where y = f (x), i.e. the set

G = {(x, y) | x ∈ X ∧ y = f (x)} .

We can describe a function this way, but we would often be more interested

in drawing the graph in a coordinate system. We draw the graph by marking

all the points in the set G. Since each value of x corresponds to one and

only one value of y , we can look at a curve and immediately see if it is the

graph of a function or not. If a given curve is the graph of a function, any

vertical line in the coordinate system intersects the curve at most once (see

�gure 1.2).

1

1
(1)

(2)

(a) The graph of a function.

1

1
(1)

(2)

(b) Not the graph of a function.

Figure 1.2: A function assigns exactly one

y-value to each x-value. Therefore, vertical

lines intersect the graph at most once.
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6 What is a function?

There is a unique relationship between a function and its graph. But

it is seldom possible to visualise the entire graph of a function, since a

coordinate system is in�nite and a drawing is limited. Therefore, if we

want to know everything about a function, it would be useful to have a

formula of the function, which shows us how to calculate the number f (x)
when we know the number x .

Example 1.1 We look at the function f , which has the formula

f (x) =
x
2
−
√
x + 1 .

Using the formula of the function, we can calculate every point on the

graph. E.g., we have

f (8) =
8
2
−
√
8 + 1 = 4 + 3 = 7 ,

and

f (24) =
24
2
−
√
24 + 1 = 12 + 5 = 17 .

We now know that the points (8, 7) and (24, 17) are on the graph of this

function.

1.1 Domain and range

The sets X and Y mentioned above describe the possible x-values and

the possible y-values. The set X containing the possible x-values of the

function f is also known as the function’s domain.

De�nition 1.2

Given a function f , the set of numbers x for which f (x) exists, is called

the domain of f .

We denote the domain of f by Dom(f ).

A lot of the functions we are going to describe below have the entire set

of real numbers as their domain; but there are cases where some numbers

cannot be used as x-values.

Example 1.3 The function f has the formula

f (x) =
√
x + 3 .

Since we cannot take the square root of a negative number, x + 3 must

always be positive, i.e.

x + 3 ≥ 0 ⇔ x ≥ −3 .

Therefore, the domain of f contains every number greater than or equal to

−3:
Dom(f ) = [−3;∞[ .
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Example 1.4 The function g is de�ned by

g(x) =
3

4 − x
.

We cannot divide by 0, wherefore the denominator of this fraction cannot

be 0, i.e.

4 − x ≠ 0 ⇔ x ≠ 4 .

So, the number 4 is not in the domain of g, and

Dom(g) = ℝ ⧵ {4} .

The set of all possible function values of a function is called the range of a

function:

De�nition 1.5

Given a function f , the set of possible function values of f is called the

range of f . We denote this by Ran(f ).

We have

Ran(f ) = {f (x) | x ∈ Dom(f )} .

1.2 Combining functions

We can create new functions by using the ordinary mathematical operations.

For example, we may multiply some function f by a number. If we multiply

f by the constant c, we get the new function c ⋅ f , which is de�ned in the

following way:

(c ⋅ f )(x) = c ⋅ f (x) .

We may also add, subtract, multiply or divide two functions. We have the

following de�nition:

De�nition 1.6

Let two functions f and g, and a constant c be given. We then de�ne

the functions c ⋅ f , f + g, f − g, f ⋅ g and
f
g to be the functions where

(c ⋅ f )(x) = c ⋅ f (x)
(f + g)(x) = f (x) + g(x)
(f − g)(x) = f (x) − g(x)
(f ⋅ g)(x) = f (x) ⋅ g(x)

(
f
g) (x) =

f (x)
g(x)

The de�nition states that we �nd the functions values of the new functions

by performing the appropriate calculation on the functions values of the

known functions. E.g., the function values of the function c ⋅ f are the

function values of f multiplied by c. We must then have

Dom(c ⋅ f ) = Dom(f ) ,

because c ⋅ f and f must be de�ned for the exact same values of x .
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Example 1.7 Figure 1.3 shows the graphs of the functions f and 3 ⋅ f ,

where f is given by

f (x) =
2

x2 + 1
.

The formula of 3 ⋅ f is then

(3 ⋅ f )(x) = 3 ⋅ f (x) =
6

x2 + 1
.

1

1
f

3 ⋅ f

(1; 1)

(1; 3)

(1)

(2)

Figure 1.3: The graphs of f and 3 ⋅ f .

The �gure shows that the graph of f passes through the point (1, 1), while

the graph of 3 ⋅ f passes through the point (1, 3). Thus, every function value

is 3 times larger, and the graph of 3 ⋅ f is the graph of f scaled by 3 in the

vertical direction.

If we analyse the formula of f , we �nd

Ran(f ) = ]0; 2] .

Because every function value of 3 ⋅ f is 3 times the corresponding function

value of f , we have

Ran(3 ⋅ f ) = ]0; 6] ,

which we can also see from the graph.

The example demonstrates that the graph of c ⋅ f is found by scaling the

graph of f by a factor c. We can then �nd the range of c ⋅ f by multiplying

every element of Ran(f ) by c.

Example 1.8 For the two functions f and g given by

f (x) = x2 − 5 and g(x) = 2x ,

we have

f (3) = 32 − 5 = 4
g(3) = 23 = 8 ,

i.e.

(f ⋅ g)(3) = f (3) ⋅ g(3) = 4 ⋅ 8 = 32 .

The functions described above are de�ned for all values of x where f and

g are both de�ned. Therefore, we have

Dom(f + g) = Dom(f − g) = Dom(f ⋅ g) = Dom(f ) ∩ Dom(g) .

The exception is Dom(
f
g), which cannot contain those elements where

g(x) is 0.
2

Here, we get
2
Since we are not allowed to divide by 0.

Dom(
f
g) = Dom(f ) ∩ {x ∈ Dom(g) | g(x) ≠ 0} .

Determining the ranges of such functions require analysis of the speci�c

situation.
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Example 1.9 Two functions f and g are given by

f (x) = 1
2x and g(x) =

√
x + 4 .

The function f + g has the formula

(f + g)(x) = 1
2x +

√
x + 4 .

The graphs of all three functions are shown in �gure 1.4. 1

1 f
g

f + g

(1)

(2)

Figure 1.4: The graphs of f , g, and f + g.

The functions f and g have the domains

Dom(f ) = ℝ and Dom(g) = [−4;∞[ .

The domain of f + g is the intersection of these two sets:

Dom(f + g) = [−4;∞[ .

We can use the graph to analyse the functions, and we �nd

Ran(f ) = ℝ
Ran(g) = [0;∞[

Ran(f + g) = [−2;∞[

Example 1.10 Figure 1.5 shows the graphs of the two functions

f (x) = 2x and g(x) = x2 + 1 ,

and the function
f
g , which has the formula

(
f
g) (x) =

2x
x2 + 1

.

1

1

f

g

f
g

(1)

(2)

Figure 1.5: The graphs of f , g, and
f
g .

The �gure shows that

Ran(f ) = ℝ and Ran(g) = [1;∞[

while

Ran(
f
g)

= [−1; 1] .

Functions may also be combined by composition. We de�ne the composite

function f ◦g in this way:

De�nition 1.11: Composite function

Given two functions f and g, we de�ne the composite function f ◦g to

be the function where

(f ◦g)(x) = f (g(x)) .

So, we �nd the function values of f ◦g by �rst calculating g(x) and then

using the function f on this number.
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Example 1.12 The functions f and g are given by

f (x) =
√
x + 5 and g(x) = x2 + 7 .

I.e.

g(2) = 22 + 7 = 11

f (11) =
√
11 + 5 = 4 ,

so,

(f ◦g)(2) = f (g(2)) = f (11) = 4 .

We can �nd a formula for f ◦g by replacing x in the formula for f by the

formula for g. We then get

(f ◦g)(x) =
√
g(x) + 5 =

√
(x2 + 7) + 5 =

√
x2 + 12 .

2

2f

g f ◦g

(1)

(2)

Figure 1.6: The graphs of f , g, and f ◦g.

The graphs of the functions f , g, and f ◦g are shown in �gure 1.6.

1.3 Shifting graphs

If we shift the graph of a function, we get the graph of a new function. In

this section, we describe a general method for �nding the formula of the

function we get when we shift a graph.

Figure 1.7 shows how a graph is shifted horizontally or vertically.

If the graph of the function f (x) is shifted horizontally by x0, we get the

graph of a new function g(x), where

g(x + x0) = f (x) .

We can rewrite this and get

g(x) = f (x − x0) ,

which we may use to �nd a formula for g if we know a formula for f .

x x + x0

y

f (x)

+x0

(1)

(2)

(a) Horizontal shift.

x

y

y + y0
f (x)

+y0

(1)

(2)

(b) Vertical shift.

Figure 1.7: We can shift a graph horizon-

tally and vertically.
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If we shift the graph of f vertically by y0, we get the graph of the new

function g, which satis�es

g(x) = f (x) + y0 .

When we shift a graph both horizontally and vertically, we say that we shift

the graph by (x0, y0). Combining the results above, we get this theorem:

Theorem 1.13

If we shift the graph of the function f (x) by (x0, y0), we get the graph

of the function

g(x) = f (x − x0) + y0 .

Example 1.14 Figure 1.8 shows the graph of f (x) =
√
x shifted by (1, 3).

According to theorem 1.13 this yields the graph of

g(x) = f (x − 1) + 3 =
√
x − 1 + 3 .

1

1 f (x) =
√
x

g(x) =
√
x − 1 + 3

(1)

(2)

Figure 1.8: The graph of f (x) =
√
x shifted

by (1, 3).

1.4 Inverse functions

A function is a unique mapping of one set of numbers (the domain) onto

another set of numbers (the range). The inverse function is the function

which swaps the direction of this mapping. If the function f maps x onto

y, the inverse function f −1 maps y onto x :

x y
f

f −1

Example 1.15 The function f is given by the formula

f (x) = 3x − 5 .

Some of the function values of f are

f (1) = 3 ⋅ 1 − 5 = −2
f (6) = 3 ⋅ 6 − 5 = 13

Since f (1) = −2 and f (6) = 17, we have

f −1(−2) = 1 and f −1(17) = 6 .

The function f maps 1 to −2, so f −1 maps −2 to 1, etc.

Not every function has an inverse function. The inverse function is—as the

name implies—a function, i.e. f −1(x) has to be uniquely determined.
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Example 1.16 The function f given by

f (x) = x2

has no unique inverse function. This is because e.g.

f (−4) = (−4)2 = 16
f (4) = 42 = 16

Because f (−4) and f (4) are both equal to 16, we cannot de�ne uniquely

f −1(16), which means an inverse function of f does not exist.

Therefore, an inverse function f −1 of f only exists when di�erent x-values

also have di�erent y-values. Functions which satisfy this are called injective:

De�nition 1.17

Let f be a function. If for every pair x1, x2 ∈ Dom(f ), we have

x1 ≠ x2 ⇒ f (x1) ≠ f (x2)

we say that f is an injective function.

We can investigate whether a certain function is injective by drawing

its graph. If no two x-values have the same y-value, no horizontal line

may intersect the graph more than once. As example 1.16 above shows,

f (x) = x2 is not injective (see �gure 1.9).

1

1

f

(1)

(2)

Figure 1.9: The function f (x) = x2 is not

injective.

So, injective functions have inverse functions. Formally, we may de�ne

them in this manner:

De�nition 1.18

Let f be an injective function. The inverse function f −1 of f is the

function satisfying

(f −1◦f )(x) = x and (f ◦f −1)(x) = x

for every x ∈ Dom(f ).

The de�nition tells us that if we use the function f on x and then use f −1,
we get the element x back. I.e. f and f −1 are the exact opposites of each

other. This means that if y = f (x), then x = f −1(y).

Example 1.19 If the function f is given by the formula

f (x) = 2x − 6 ,

The inverse function has the formula

f −1(x) = 1
2x + 3 .

We can show that this is correct by determing formulas for f −1◦f and f ◦f −1.
We get

(f −1◦f )(x) = 1
2 (2x − 6) + 3 =

1
2 ⋅ 2x −

1
2 ⋅ 6 + 3 = x − 3 + 3 = x
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and

(f ◦f −1)(x) = 2 ⋅ ( 12x + 3) − 6 = 2 ⋅
1
2x + 2 ⋅ 3 − 6 = x + 6 − 6 = x .

This shows that f −1(x) = 1
2x + 3 is the inverse function of f .

As we have previously demonstrated, f (x) = x2 is not an injective function;

but if we limit the domain to positive numbers, it is. In the next example,

we demonstrate how to �nd the inverse function in this case.

Example 1.20 Let f be given by

f (x) = x2 , x ≥ 0 .

The domain of f is the set Dom(f ) = [0;∞[ , and on this set, f is injective.

The graph of f (x) and its inverse function are shown in �gure 1.10.

1

1

f f −1

(1)

(2)

Figure 1.10: The function f (x) = x2 (x > 0)

and its inverse f −1(x) =
√
x .

If y = f (x), x = f −1(y). We can then �nd the inverse function of f (x) by

solving the equation f (x) = y with respect to x :

f (x) = y ⇔ x2 = y ⇔ x = √y .

I.e. we have f −1(y) = √y, or

f −1(x) =
√
x .

As the example above shows, we can �nd the inverse function f −1(y) by

solving the equation f (x) = y. If we know f −1(y), we can then exchange

variables if we would rather write the function as f −1(x).

Example 1.21 The function g is given by

g(x) = x3 + 2 .

To determine the inverse function, we solve the equation

g(x) = y ⇔ x3 + 2 = y ⇔ x3 = y − 2 ⇔ x = 3
√
y − 2 .

I.e.

g−1(x) = 3√x − 2 .

The graphs of the two functions g and g−1 are shown in �gure 1.11

1

1

g
g−1

(1)

(2)

Figure 1.11: The function g(x) = x3+2 and

its inverse g−1(x) = 3√x − 2.

As �gures 1.10 and 1.11 show, we �nd the graph of an inverse function

by re�ecting the graph of the original function in the line y = x . The

reason is that we �nd the graph of the inverse function by taking all of the

points on the graph of the original function and exchanging the x- and

y-coordinates—because f −1 is the exact opposite of f .

1.5 Growth

We are often interested in investigating the growth of a function, i.e. how

the dependent variable changes when the independent variable increases

or decreases. E.g. we may investigate what happens when the independent

variable increases by 1, or when it is doubled.
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Absolute and relative growth

When we talk about growth, there are two ways to describe this growth:

As an absolute or as a relative growth. The absolute growth shows how

much a given quantity has grown, i.e. how much larger it has become. The

relative growth shows how much a quantity has grown compared to its
initial value.

De�nition 1.22

If a quantity x increases from x1 to x2, the absolute growth is

Δx = x2 − x1 ,

and the relative growth is

rx =
Δx
x1

.

The absolute growth is the di�erence between the �nal value and the initial

value, while the relative growth is the ratio of this di�erence and the initial

value. We may calculate the relative growth rx in di�erent ways, since

Δx
x1

=
x2 − x1
x1

=
x2
x1
− 1 .

Example 1.23 A quantity x increases from x1 = 5 to x2 = 8. The absolute

growth is then

Δx = x2 − x1 = 8 − 5 = 3 ,

and the relative growth is

rx =
Δx
x1

=
3
5
= 0.6 .

The absolute growth shows that the quantity has increased by 3, while

the relative growth shows that the quantity has increased by 0.6 times the

initial value.

Note also that when we calculate the absolute growth, we always subtract

the initial value from the �nal value, i.e. the di�erence is calculated with
sign.

Example 1.24 A quantity t changes from t1 = 20 til t2 = 14. The absolute

growth is then

Δt = 14 − 20 = −6 ,

and the relative growth is

rt =
Δt
t1
=
−6
20

= −0.3 .

Here, the absolute and the relative growth are both negative. The reason

for this is that the quantity t has decreased. I.e. a growth of −6 shows us

that the quantity has decreased by 6; and a relative growth of −0.3 shows

us that the quantity has decreased by 0.3 times the initial value.
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Relative growths are often written as a percentage. We �nd the percentage

by multiplying the relative growth by 100 and writing the symbol % to

indicate that we have done so. It may be easier to compare percentages,

because the numbers are not as small as when we write the relative growths

directly.

Example 1.25 A quantity p increaes from p1 = 25 to p2 = 32. The relative

growth is

rp =
32 − 25
25

= 0.28 = 28% .

We can then say either that p has a relative growth of 0.28, or that p has

increased by 28%.

Rewriting the formulas in de�nition 1.22 yields the following theorem,

which shows how to �nd the �nal value when we know the initial value

and either the absolute or the relative growth:

Theorem 1.26

If the quantity x increases from x1 to x2, then

x2 = x1 + Δx

and

x2 = (1 + rx ) ⋅ x1 .

If a quantity has a certain relative growth, the initial value is multiplied by

1 + rx . So, relative growth corresponds to multiplying by some number.

Example 1.27 The quantity x has an initial value of x1 = 80 and increases

by 17%. What is the �nal value x2?

The relative growth is 17%, i.e. 0.17. We then have

x2 = (1 + 0.17) ⋅ 80 = 93.6 .

So, the �nal value is 93.6.

When we investigate functions, we often would like to know how the

function value increases when x increases. We therefore de�ne the function
growth in this way:

De�nition 1.28

Let a function f be given. If the indepent variable increases from x1 to

x2, the function growth is

Δf = f (x2) − f (x1) .

Example 1.29 A function f is de�ned by

f (x) = 4x − 5 .
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If x increases from x1 = 10 to x2 = 13, the absolute growth is

Δx = 13 − 10 = 3 ,

and the corresponding function growth is

Δf = f (13) − f (10) = (4 ⋅ 13 − 5) − (4 ⋅ 10 − 5) = 12 .

So, when x increases from 10 to 13, the function value increases by 12.

Increasing and decreasing functions

A function is called increasing when the function value always gets larger

as the independent variable increases. It is called decreasing when the

function value always gets smaller as the independent variable increases.

We de�ne increasing and decreasing function in this way:

De�nition 1.30

Let a function f , and two numbers x1, x2 ∈ Dom(f ) be given. If

x2 ≥ x1 ⇒ f (x2) ≥ f (x1) ,

we say that the function is increasing, whereas we say that it is de-
creasing when

x2 ≥ x1 ⇒ f (x2) ≤ f (x1) ,

Thus, the de�nition says that a function is increasing if we get a larger func-

tion value by choosing a larger x-value. Similarly, a function is decreasing

when we get a smaller function value by choosing a larger x-value.

If x2 ≥ x1, then Δx ≥ 0. I.e. the conditions for a function to be increasing

or decreasing may also be written as

Δx ≥ 0 ⇒ Δf ≥ 0 ,

and

Δx ≥ 0 ⇒ Δf ≤ 0 .

1

1

f
(1)

(2)

(a) An increasing function.

1

1 f
(1)

(2)

(b) A decreasing function.

Figure 1.12: The graph of an increasing

and a decreasing function. For increasing

functions, the graph goes upwards as we

move to the right, and for decreasing func-

tions, the graph moves downwards as we

move to the right.
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Since an increasing function behaves in such a way that the function values

become ever larger as x increases, the graph of an increasing function will

move upwards to the right. The graph of a decreasing function will then

move in the opposite direction, i.e. downwards to the right (see �gure 1.12).

1.6 Exercises

Exercise 1.1
Determine the domains of the following functions:

f1(x) =
x

1 − x
a) f2(x) =

√
x + 7b)

f3(x) =
1

x2 − 9
c) f4(x) = 13d)

f5(x) =
√
4 − x2e) f6(x) =

7
x2 + 3

.f)

Exercise 1.2
Draw the graphs of the following functions, and deter-

mine their ranges:

f (x) =
√
xa)

g(x) = 3x − 1 , −4 ≤ x ≤ 7b)

ℎ(x) =
12

x2 + 3
c)

k(x) = 5 −
√
xd)

l(x) =
1

5 −
√
x2 + 9

e)

Exercise 1.3
The functions f and g are given by

f (x) = 3x − 6 and g(x) = x2 − 9 .

Calculate (f + g)(2), (f − g)(8), and (f ⋅ g)(0).a)

Determine formulas for 3 ⋅ f and
f
g .b)

Determine a formula for 3 ⋅ f + g
f .c)

Determine Dom(
f
g) and Dom(

g
f ).d)

Exercise 1.4
Determine the ranges of

f
g and

g
f when

f (x) = 3x and g(x) = x2 + 1 .

Exercise 1.5
The two functions p and q are given by

p(x) = 4x − 2 and q(x) = −2x + 5 .

Solve the equations

(p + q)(x) = 5a) (q − p)(x) = 13b)

(2p − q)(x) = 21c) (p + 3q)(x) = −7d)

(
p
q) (x) = 6e) (

q
p) (x) =

p(2)
4

f)

Exercise 1.6
Determine formulas for f ◦g and g◦f when

f (x) = x2 − 3 and g(x) = 5xa)

f (x) =
1
x

and g(x) = 1 + xb)

f (x) =
√
9 − x and g(x) = 2x − 3c)

f (x) =
√
x2 + 1 and g(x) =

x
x − 1

d)

Exercise 1.7
The functions f and g are given by

f (x) =
√
x + 1 and g(x) = 3x2 + 1 .

Determine formulas for f ◦g and g◦f .a)

Determine the domains of f ◦g and g◦f .b)

Determine the ranges of f ◦g and g◦f .c)

Exercise 1.8
Determine a formula for the function whose graph is

the graph of f shifted by (4, 1) when

f (x) = 5x − 3a) f (x) =
√
x + 4b)

f (x) = x2c) f (x) =
x

x + 4
d)



18 What is a function?

Exercise 1.9
Draw the graphs and use them to determine which of

these functions are injective:

f (x) = x2 − 4a) g(x) =
√
2x + 10b)

ℎ(x) =
1

x + 3
c) k(x) =

x
x2 + 1

d)

Exercise 1.10
Determine the inverse functions of

f1(x) = 2x + 6a) f2(x) = −x + 3b)

f3(x) = xc) f4(x) = 1
2x + 5d)

f5(x) = 6x − 1e) f6(x) = − 34x +
1
2f)

Exercise 1.11
The two functions f and g are given by

f (x) =
x

x − 2
and g(x) =

2x
x − 1

.

Are these functions each other’s inverse functions?

Exercise 1.12
A quantity increases from x1 = 20 to x2 = 37.

Determine the absolute and the relative growth.

Exercise 1.13
A quantity t has an initial value of t1 = 45. The quantity

then increases with a relative growth of rt = 0.71.

Determine the �nal value t2.

Exercise 1.14
A quantity p increases from p1 to p2. The absolute

growth is Δp = 10, and the relative growth is rp = 0.8.

Determine p1 and p2.

Exercise 1.15
A function f is given by

f (x) = x2 − x .

Determine the function growth when x increases from

x1 = 5 to x2 = 7.
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Linear functions are some of the simplest functions to work with. As you

may recall, linear functions are de�ned in this way:

De�nition 2.1

A linear function is a function of the form

f (x) = ax + b ,

where a and b are two numbers.

Here, we de�ne linear functions based on their formulas. I.e. the de�nition

does not contain any information on the properties of linear functions.

Instead, these properties must be derived from the formula.

But it is possible to turn things around and base the de�nition of linear

functions on the properties we want them to have. If we do so, we get this

alternative de�nition of what a linear function is:

De�nition 2.2: Alternative de�nition

A linear function f is a function where any �xed increase of the in-

dependent variable implies another �xed increase of the dependent

variable.

If both de�nitions are possible, the de�nitions have to be equivalent. I.e.

de�nition 2.1 must imply the property in de�nition 2.2, and the formula in

de�nition 2.1 must be a consequence of the property in de�nition 2.2.

If we de�ne linear functions according to de�nition 2.1, then the formula

is given. We can then investigate the value of Δy for a �xed Δx . We get

Δy = f (x + Δx) − f (x) = (a(x + Δx) + b) − (ax + b) = a ⋅ Δx .

I.e. given some Δx , Δy = a ⋅ Δx . Therefore, a �xed absolute growth Δx
of x leads to another (corresponding) �xed growth Δy = a ⋅ Δx of y. So,

de�nition 2.1 does imply the property in de�nition 2.2.

If we, on the other hand, start with de�nition 2.2, we know that an absolute

increase in x must lead to an absolute increase in y. The increase in y
which correspnds to Δx , we call a. We then have

Δx = 1 ⇒ Δy = a .

19
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Then we must also have

Δx = 2 ⇒ Δy = 2a

and generally

()Δx = n ⇒ Δy = n ⋅ a) ⇔
Δy
Δx

= a . (2.1)

If (x0, y0) is a known point on the graph of the function, and (x, y) is another

arbitrary point, then Δx = x − x0 and Δy = y − y0, and we get

y − y0
x − x0

= a ⇔ y − y0 = a ⋅ (x − x0) .

We can rewrite this equation and obtain

y = a ⋅ (x − x0) + y0 = a ⋅ x + y0 − a ⋅ x0 .

If we introduce the constant b = y0 − ax0, this is the formula from de�ni-

tion 2.1. So, de�nition 2.2 does lead to de�nition 2.1.

Therefore, both of these de�nition are equally valid, and we may de�ne lin-

ear functions in di�erent ways; depending on what we wish to emphasise.

Because Δy = a ⋅ Δx , the number a describes how much Δy increases

compared to Δx . If we look at the graph, a larger value of a will lead to a

steeper graph.

We can even rewrite the equation 2.1 to get

a =
Δy
Δx

⇔ a =
y2 − y1
x2 − x1

,

which is the well-known formula for the slope of a linear function.

2.1 Exercises

Exercise 2.1
Determine, without drawing, a formula for the linear

function, whose graph passes through the points:

A(−1, 6) and B(2, −3).a) P(2, 13) and Q(−3, 3).b)

R(6, −3) and S(−1, 25).c) C(14, 4) and D(6, 0).d)

Exercise 2.2
The linear functions f and g have parallel graphs. The

graph of f passes through the point A(3, 4) and inter-

cepts the x-axis at (−6, 0). The graph of g intercepts the

y-axis at (0, −3).

Determine formulas for each of the functions f and g.
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An exponential function is de�ned in the following way:
1 1

In some contexts, only functions of the

form f (x) = ax are called exponential func-

tions, but here “exponential function” cov-

ers both cases.

De�nition 3.1

An exponential function is a function of the form

f (x) = b ⋅ ax ,

where a and b are two positive numbers.

The number a in de�nition 3.1 is called the multiplication factor and b is

called the initial value.

The reason b is called the initial value is that the graph of an exponential

function intercepts the y-axis at the point (0, b). This is because

f (0) = b ⋅ a0 = b ⋅ 1 = b .

Examples of graphs of exponential functions are shown in �gure 3.1. As

the �gure demonstrates, graphs of exponential functions do not intercept

the x-axis. The reason is that the functions values cannot be negative; since

ax is always positive whenever a is a positive number—whatever the value

of x may be.

1

1

f
g

(1)

(2)

Figure 3.1: The graphs of the two expo-

nential functions f (x) = 2 ⋅ 1.4x and g(x) =
4 ⋅ 0.8x .

3.1 Exponential growth

Exponential functions increase in such a way, that every �xed absolute

increase in the independent variable implies a �xed relative increase in the

dependent variable. This is implied by the following theorem:

Theorem 3.2

Let f (x) = b ⋅ ax be an exponential function. Whenever x increases by

Δx , the function value is multiplied by aΔx .

Proof
If x increases from x1 to x2, the function value increases from

y1 = f (x1) = b ⋅ ax1

to

y2 = f (x2) = f (x1 + Δx) = b ⋅ ax1+Δx = b ⋅ ax1 ⋅ aΔx = y1 ⋅ aΔx .

21
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Thus, the new function value y2 is equal to y1 ⋅ aΔx , and we have proved

the theorem. ■

Example 3.3 Table 3.2 shows the growth of an exponential function.

Here, we see that for the function f (x) = 4 ⋅ 2x , every time x increases by 3,

the function value is multiplied by 23 = 8.

Table 3.2: Growth of f (x) = 4 ⋅ 2x .

x y

−3 0.5

0 4

3 32

6 256

+3
+3
+3

⋅23

⋅23

⋅23
When x increases by Δx , f (x) is multiplied by aΔx . I.e. the relative growth

is

rf =
f (x2) − f (x1)

f (x1)
=
aΔx ⋅ f (x1) − f (x1)

x1
= aΔx − 1 .

So, the relative growth of the function equals aΔx − 1.

Therefore, if Δx = 1, the function will have a relative growth of a − 1.
If a < 1, this number is negative. This is an argument for the following

theorem:

1 2 3 4

y0

y0 ⋅ a

y0 ⋅ a2

y0 ⋅ a3

(1)

(2)

Figure 3.3: Growth of an exponential func-

tion.

Theorem 3.4

For an exponential function f (x) = b ⋅ ax , we have:

1. If a > 1, the function is increasing.

2. If 0 < a < 1, the function is decreasing.

As we have shown above, the relative growth a − 1 corresponds to an

increase in x by 1, i.e. it makes sense to de�ne the growth rate to be

r = a − 1 .

For the growth rate, we have the following theorem, which is a direct

consequence of theorem 3.4.

Theorem 3.5

For an exponential function f (x) = b ⋅ ax , we de�ne the growth rate

r = a − 1 .

We then have:

1. If r > 0, the function is increasing.

2. If r < 0, the function is decreasing.

When we know that exponential functions display relative growth, we

can use them as mathematical models of cases which display this type of

growth.

Example 3.6 In 2014, 8.6 million people lived in Honduras, and the popu-

lation growth was 1.7% annually.[4] Therefore, we can describe the popu-

lation of Honduras using an exponential function with an initial value of

8.6 and a growth rate of 1.7%.
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The growth rate is 1.7%, wherefore the multiplication factor is

a = 1 + 1.7% = 1 + 0.017 = 1.017 .

Therefore, the population is given by the function

f (x) = 8.6 ⋅ 1.017x ,

where x is the number of years after 2014, and f (x) is the population in

millions.

Example 3.7 A microbial culture grows exponentially, and the number

of bacteria may be described by the function

B(t) = 364 ⋅ 1.72t ,

where t is the time in hours, and B(t) is the number of bacteria.

From this formula, we derive the following: At the time t = 0, the culture

contains 364 bacteria. The multiplication factor is 1.72, which means the

growth reate is

r = 1.72 − 1 = 0.72 .

So, the number of bacteria have a relative growth of 0.72 per hour (or a

growth of 72% per hour).

3.2 Determining a formula

If we know two points on the graph of an exponential function f (x) =
b ⋅ ax , we can use the coordinates to determine the constants a and b (see

�gure 3.4). P(x1, y1)

Q(x2, y2)

(1)

(2)

Figure 3.4: The graph of an exponential

function passes through the points P and

Q.

Theorem 3.8

If the graph of an exponential function f (x) = b ⋅ ax passes through

the two points P(x1, y1) and Q(x2, y2), then

a = x2−x1

√
y2
y1

and b =
y1
ax1

.

Proof
If P(x1, y1) lies on the graph of f (x) = b ⋅ ax , we have

y1 = b ⋅ ax1 . (3.1)

The point Q(x2, y2) also lies on the graph of f , so

y2 = b ⋅ ax2 . (3.2)

If we divide equation (3.2) by equation (3.1), we get

y2
y1

=
b ⋅ ax2

b ⋅ ax1
⇔

y2
y1

=
ax2

ax1
⇔
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y2
y1

= ax2−x1 ⇔

x2−x1

√
y2
y1

= a ,

and we have proven the formula for a.

To prove the formula for b, we isolate b in equation (3.1) and get

y1 = b ⋅ ax1 ⇔
y1
ax1

= b .

This proves the formula for b. ■

Example 3.9 If the graph of an exponential function f (x) = b ⋅ ax passes

through the two points P(2, 12) and Q(5, 96), then

x1 = 2, y1 = 12, x2 = 5 and y2 = 96 .

Using the formulas from theorem 3.8, we get

a = x2−x1

√
y2
y1

= 5−2

√
96
12

= 3√8 = 2 ,

b =
y1
ax1

=
12
22

=
12
4
= 3 .

Therefore, a formula for this function is f (x) = 3 ⋅ 2x .

3.3 Doubling time and half-life

According to theorem 3.2, the function value of an exponential function

has a �xed relative growth, when x has a �xed absolute growth. Therefore,

if an exponential function is increasing, it makes sense to investigate how

much x must increase for the function value to have a relative increase of

1—i.e. when it is doubled. We call this number the doubling time or the

doubling constant, and denote it by T2.

Theorem 3.2 states that the function value is multiplied by aΔx when x
increases by Δx . Thus, to determine T2 we need to �nd the value of Δx , so

that aΔx = 2.2 So, T2 is the solution to the equation
2
Because doubling is the same as adding

100%.

aT2 = 2 .

The solution to this equation is
33

The log function is described in chapter 4.

T2 =
log(2)
log(a)

.

Figure 3.5 illustrates the doubling time. An important point is that the func-

tion value doubles every time we add T2 to x . Only exponential functions

have this property.

x0 x0 + T2

y0

2 ⋅ y0

T2
(1)

(2)

Figure 3.5: When we add T2 to x0, the func-

tion value doubles.

When we look at decreasing exponential functions, it does not make sense

to talk about doubling; instead, we determine the so-called half-life. The

half-life T 1
2

is analogous to the doubling time, and we have the following

theorem:
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Theorem 3.10

For an exponential function f (x) = b ⋅ ax , we have:

1. If f is increasing, the doubling time is T2 = log(2)
log(a) .

2. If f is decreasing the half-life is T 1
2
= log( 12 )

log(a) .

Example 3.11 The exponential function f (x) = 3⋅1.7x has a multiplication

factor of a = 1.7. So, the doubling time is

T2 =
log(2)
log(a)

=
log(2)
log(1.7)

= 1.31 .

I.e. each time x increases by 1.31, the function value doubles.

Therefore, an increase from x = 5 to x = 6.31 will double the function

value, and so will an increase from x = 100 to x = 101.31.

3.4 Exercises

Exercise 3.1
An exponential function is given by f (x) = 3.2 ⋅ 1.7x .

By how much is the function value multiplied

when the x-value increases by 1?

a)

What is the relative growth of the y-value when

the x-value increases by 1?

b)

By how much is the function value multiplied if

the x-value increases by 5?

c)

What is the relative growth if the x-value in-

creases by 5?

d)

How much has the x-value increased if the func-

tion value has increased by 80%?

e)

Exercise 3.2
An exponential function is given by f (x) = 3.2 ⋅ 0.63x .

By how much is the function value multiplied

when the x-value increases by 1?

a)

What is the relative growth of the y-value when

the x-value increases by 1?

b)

By how much is the function value multiplied if

the x-value increases by 3?

c)

What is the relative growth if the x-value in-

creases by 3?

d)

How much has the x-value increased if the func-

tion value has decreased by 50%?

e)

Exercise 3.3
f is an exponential function, f (x) = b ⋅ ax . When x = 2
the function value is 10, and the function value has a

relative growth of 0.25 when x has an absolute growth

of 3.

Determine a formula for this function.

Exercise 3.4
The graph of an exponential function passes through

the two points (−2, 0.3) and (5, 7.0)

Determine a formula for this function.a)

Determine the growth rate.b)

Exercise 3.5
The graph of an exponential function f (x) = b⋅ax passes

through the points (2, 6) and (5, 45).

Determine a formula for this function.

Exercise 3.6
An exponential function g(x) has a graph, which passes

through the points (1, 2) and (3, 32).

Determine a formula for this function.a)

Determine g(2).b)

Determine the relative function growth when x
increases by 4.

c)
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Exercise 3.7
The graph of an exponentially increasing function

passes through the points (1, 6) and (3, 54).

Determine a formula for this function.a)

Determine the doubling time.b)

Exercise 3.8
An increasing exponential function has a growth rate

of 34.2%.

Determine the doubling time.

Exercise 3.9
A decreasing exponential function has a half-life of 8.9.

Determine the growth rate.

Exercise 3.10
A decreasing exponential function has a half-life of 6.5.

The graph of this function passes through the point

(3.4, 20.9).

Determine a formula for this function.
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An exponential equation is an equation of the form ax = k, where a is the

base and k is some number. We cannot solve these types of equations using

the standard arithmetical operations. To solve these equations we need the

so-called logarithms.

De�nition 4.1

If a and k are two positive numbers, we de�ne the number loga(k) to

be the number that solves the equation ax = k.

We call the function loga the logarithm to base a.

Example 4.2 From the de�nition of the logarithm to base a, we derive

the following results:

log2(8) = 3 because 23 = 8
log7(49) = 2 because 72 = 49

log10(10 000) = 4 because 104 = 10 000

log9 (
1
3)

= −
1
2

because 9−
1
2 =

1
3

log4.5(2) = 0.4608 because 4.50.4608 = 2 .

The de�nition states that if x = loga(k), then x is the solution to the

equation ax = k. This implies that

aloga(k) = k and x = loga(a
x ) .

We may state this as a theorem:

Theorem 4.3

The logarithm to base a satis�es

aloga(x) = x and loga(a
x ) = x .

I.e. loga(x) is actually the inverse function of ax .

Rules for logarithms

Theorem 4.3 combined with exponentiation rules can be used to prove the

following theorem:

27
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Theorem 4.4

For the logarithm to base a we have:

1. loga(r ⋅ s) = loga(r) + loga(s).

2. loga (
r
s ) = loga(r) − loga(s).

3. loga(rp) = p ⋅ loga(r).

Proof
To prove the three rules, we use theorem 4.3, i.e. the fact that r = aloga(r)
and r = loga(ar ).11

In the proof we also use the identities

1. an ⋅ am = am+n ,

2.
an
am = an−m and

3. (an)m = an⋅m .

1. For loga(r ⋅ s), we have

loga(r ⋅ s) = loga (a
loga(r) ⋅ aloga(s))
= loga (a

loga(r)+loga(s)) = loga(r) + loga(s) .

2. For loga (
r
s ), we have

loga (
r
s )

= loga (
aloga(r)

aloga(s))

= loga (a
loga(r)−loga(s)) = loga(r) − loga(s) .

3. For loga(rq), we have

loga(r
p) = loga ((a

loga(r))
p
) = loga (a

p⋅loga(r)) = p ⋅ loga(r) .

This concludes the proof of the theorem. ■

Example 4.5 We may derive from theorem 4.4 that

loga(ax) = loga(a) + loga(x) = 1 + loga(x) ,

loga (
x
a)

= loga(x) − loga(a) = loga(x) − 1 ,

loga (
1
x )

= loga(x
−1) = −1 ⋅ loga(x) = − loga(x) .

It turns out that the connection between logarithms to di�erent bases is

quite simple:

Theorem 4.6

For the logarithm to base a and the logarithm to base b, we have

logb(x) =
loga(x)
loga(b)

.

Proof
We may prove this theorem using the property in theorem 4.3 and rule 3

in theorem 4.4. We have

loga(x) = loga (b
logb(x)) = loga(b) ⋅ logb(x) ,
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i.e. loga(x) = loga(b) ⋅ logb(x), which we may rewrite as

logb(x) =
loga(x)
loga(b)

. ■

Theorem 4.6 shows that logarithms to di�erent bases are proportional. It

also shows that we actually only need one logarithmic function.

Example 4.7 If we want to calculate log2(16), but only have a “log10-
button” on our calculator, we may use theorem 4.6 to rewrite the calculation

to a di�erent base:

log2(16) =
log10(16)
log10(2)

.

We then calculate
log10(16)
log10(2)

and get

log2(16) = 4 .

Because we only need one logarithmic function, we only need one loga-

rithm button on a calculator. We then only need to agree upon which base,

we would prefer to use. Usually, a calculator actually has two logarithms:

one to base 10, and one to base e (Euler’s number, which we describe in

the next section).

The two logarithms log10 and loge are called the common logarithm and the

natural logarithm, and are often denoted by log (the common logarithm)

and ln (the natural logarithm), i.e.

• The common logarithm (log) is the logarithm to base 10; therefore

log = log10.
• The natural logarithm (ln) is the logarithm to base e; therefore ln =
loge.

Therefore, we have

y = log(x) ⇔ x = 10y and

y = ln(x) ⇔ x = ey .

Some CAS’s use log to denote the natural logarithm instead of the common

logarithm (this is also often the case in theoretical mathematics). Therefore,

it makes sense to always use the natural logarithm (ln always denotes

the natural logarithm); as theorem 4.6 demonstrates, we only need one

logarithm.

4.1 The natural logarithm

Euler’s number

The number e, sometimes called Euler’s number, plays a major role in

mathematics. Like π, it is an irrational number.
2

Thus e has an in�nite
2
An irrational number is a number which

cannot be written as a fraction. A charac-

teristic of irrational numbers is that they

have an in�nite amount of decimals with

no discernable pattern.

amount of decimals. To a precision of 24 decimals,

e = 2.718 281 828 459 045 235 360 287… .
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e turns up in a lot of di�erent mathematical formulas, but here we will look

only at the natural logarithm.

The natural logarithm

The natural logarithm is de�ned to be the logarithm to base e:

De�nition 4.8

The natural logarithm, ln, is the logarithm to base e:

ln(x) = loge(x) .

Because logarithms are the inverses of exponential functions, we also have

a “natural exponential function”, which is the exponential function with

base e. The natural exponential function is often denoted by exp, i.e.

exp(x) = ex .

It turns out that it is possible to rewrite every exponential function so that

they are based on this function. That is the topic of the next section.

4.2 Exponential functions

It is common to write an exponential function f (x) = b ⋅ ax in another way.

Because a = eln(a), an exponential function may be written as

f (x) = b ⋅ ax = b ⋅ (eln(a))
x
= b ⋅ eln(a)⋅x .

We may also write this as

f (x) = b ⋅ ekx (where k = ln(a)) .

Example 4.9 The exponential function f (x) = 4.6 ⋅ 9.1x may be written as

f (x) = 4.6 ⋅ e2.2x ,

because ln(9.1) = 2.2.

As we know, an exponential function f (x) = b ⋅ ax is increasing when a > 1,

and decreasing when 0 < a < 1.

Since k = ln(a) this implies that exponential functions f (x) = b ⋅ ekx satisfy:

1. The function is increasing if k > 0.

2. The function is decreasing if k < 0.

Therefore, we sometimes distinguish between increasing and decreasing

exponential functions, by separating them into two cases:

1. f (x) = b ⋅ ekx when the function is increasing.

2. f (x) = b ⋅ e−kx when the function is decreasing.
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When we do this, k is always a positive number, and the sign is not viewed

as a part of k.

There are several good reasons to write an exponential function in this way.

One of them is that calculations involving units will make sense. Another

good reason has to with a branch of mathematics known as calculus;

however, the explanation will have to wait.

Doubling times and half-lives

For an increasing exponential function, we may calculate the doubling time

T2 using the formula

T2 =
ln(2)
ln(a)

.

If the increasing exponential function has the form f (x) = b⋅ekx this instead

becomes
3 3

Here, we use that k = ln(a).

T2 =
ln(2)
k

(when f (x) = b ⋅ ekx ) .

If a decreasing exponential function is written in the form y = b ⋅ e−kx (note

the sign), we have −k = ln(a), and may therefore calculate the half-life as
4 4 1

2 = 2−1 follows from the exponentiation

rule a−n = 1
an .

T 1
2
=
ln ( 12)
−k

=
ln(2−1)
−k

=
−1 ⋅ ln(2)
−k

=
ln(2)
k

.

Thus, we may calculate the half-life using the formula

T 1
2
=
ln(2)
k

(when f (x) = b ⋅ e−kx ) .

4.3 Exercises

Exercise 4.1
Calculate

log10(1000)a) log3(9)b)

log4(64)c) log10(0, 1)d)

log7(1)e) log2(16)f)

log2 (
1
8)

g) log5(625)h)

Exercise 4.2
Calculate

log3(3) + log3(9)a)

log10(1000) − log10(100)b)

log9(98)c)

log6(
√
6)d)
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Exercise 4.3
Calculate the following numbers by rewriting the calcu-

lation to a di�erent base logarithm.

log3(8)a) log8(139)b)

log12(45)c) log5(0.6)d)

log6(3987)e) log73(932 108)f)

Exercise 4.4
Without using a calculator, determine

log(2) + log(5)a)

2 ⋅ log(5) + log(4)b)

log(25) + 2 ⋅ log(2)c)

log(25) − 2 ⋅ log(5)d)

3 ⋅ log(2) + 3 ⋅ log(5)e)

log(8) + 3 ⋅ log(5)f)

log(8) − 3 ⋅ log(2)g)

log(8) − log(2) + log ( 14)h)

Exercise 4.5
Without using a calculator, solve the following equa-

tions:

log(x) = 4a) log(x) = −1b)

log(x) = 3c) log(x) = 2d)

log(x) = −2e) log(x) = 0f)

Exercise 4.6
Solve the following equations:

log(x − 3) = 4a)

log(4x2) = 3b)

log(2x − 6) = 2c)

log(10x + 25) = 3d)

log(x + 5) = 2 − log(x − 5)e)

log(x2 + 4x + 4) = 3f)

Exercise 4.7
Use the rules for logarithms to rewrite these expressions

as much as possible:

log(100x3)a) log(1000t)b)

log(10p4 ⋅ q2)c) log (
√
1000u3)d)

Exercise 4.8
The two numbers a and b satisfy ln(a) = 1.5 and

ln(b) = 0.5.

Use this to calculate (without using a calculator):

ln(a ⋅ b)a) ln ( ab )b)

ln(a4)c) ln ( ba )d)

ln(b7)e) ln(a3 ⋅ b10)f)

Exercise 4.9
Solve the following equations:

2x = 50a) ln(x) = 3.7b)

ln(4x − 3) = 5.1c) 4 ⋅ 6x+2 = 100d)

6 ⋅ 3.9x = 78e) 5.2 ⋅ 73−x = 81.5f)

Exercise 4.10
In each case below, rewrite the exponential function

to the form f (x) = b ⋅ ekx and calculate its doubling

time/half-life.

f (x) = 0.45 ⋅ 7.8xa) f (x) = 1.7 ⋅ 0.56xb)

f (x) = 45.6 ⋅ 1.2xc) f (x) = 6.1 ⋅ 0.34xd)

Exercise 4.11
Determine a formula for the exponential function,

whose graph passes through the two points P and Q.

The formula must be of the form f (x) = b ⋅ ekx .

P(2, 4) og Q(6, 7)a) P(1, 1) og Q(4, 26)b)

P(−3, 7) og Q(2, 1)c) P(0, 17) og Q(5, 1)d)
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De�nition 5.1

A power function is a function of the form

f (x) = b ⋅ xa, x > 0 ,

where a and b are two constants, and b > 0.

Note that power functions are only de�ned for positive values of x . This is

because values of a exist where xa is not de�ned for every possible value

of x .
1 1

An example is x−1 which is equal to
1
x . Be-

cause we cannot divide by 0, this function

is unde�ned for x = 0.Because we also demand that b > 0, the graph of a power function will lie

entirely in the �rst quadrant, i.e. the x- and y-coordinates of points on the

graph of the function are always positive.

Since a power function is not de�ned for x = 0, it makes no sense to talk

about a y-axis intercept. However, the de�nition implies that the graph

of a power function f (x) = b ⋅ xa always passes through the point (1, b),
because

f (1) = b ⋅ 1a = b .

Here, we present a few examples of power functions:

Example 5.2 The area A of a circle with radius r is

A = π ⋅ r2 .

Here, the area A is a power function of the radius r . The two constants a
and b are a = 2 and b = π.

Example 5.3 The speed v of a tsunami wave (in km/h) is a power function

of the sea depth d (in metres),[1]

v = 11.2 ⋅ d0.5 .

Here, a = 0.5 and b = 11.2.

5.1 The graph of a power function

The number a in de�nition 5.1 is called the exponent. This number deter-

mines the shape of the graph of a power function. Figure 5.1 shows how

the shape of the graph changes for di�erent values of a.

33
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We have the following theorem:

Theorem 5.4

For a power function f (x) = b ⋅ xa, we have:

1. If a > 0, the function is increasing.

2. If a < 0, the function is decreasing.

1

b

a > 1
a = 1

0 < a < 1

a = 0

a < 0
(1)

(2)

Figure 5.1: The graphs of power functions

may have quite di�erent shapes.

If we know the graph of a power function, we may use two points on the

graph to calculate the two numbers a and b. (See �gure 5.2.)

Theorem 5.5

If the graph of a power function f (x) = b ⋅ ax passes through the points

(x1, y1) and (x2, y2), then

a =
log (

y2
y1)

log (
x2
x1)

and b =
y1
xa1

.

x1 x2

f (x1)

f (x2)

P(x1, y1)

Q(x2, y2)

(1)

(2)

Figure 5.2: Two points on the graph of a

power function.

Proof
If P(x1, y1) and Q(x2, y2) lie on the graph of f (x) = b ⋅ xa, then

y2 = b ⋅ xa2
y1 = b ⋅ xa1 (5.1)

We divide these two equations, and get

y2
y1

=
bxa2
bxa1

⇔

y2
y1

=
xa2
xa1

⇔

y2
y1

= (
x2
x1)

a

.

This is an exponential equation, so we need to use logarithms to solve it.

We then get

log(
y2
y1)

= log((
x2
x1)

a

) ⇔

log(
y2
y1)

= a ⋅ log(
x2
x1)

⇔

log(
y2
y1)

log (
x2
x1)

= a .

This proves the formula for a.

To prove the formula for b, we look again at equation (5.1):

y1 = b ⋅ xa1 ⇔
y1
xa1

= b .

Thus, the formula for b is also proven. ■
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5.2 Power growth

A power function increases in such a way that if the indendent variable is

multiplied by some �xed number, the dependent variable is also multiplied

by a �xed number.
2

We have the following theorem:
2
A di�erent �xed number.

Theorem 5.6

If f (x) = b ⋅ xa is a power function, then when x is multiplied by a

number k, the function value f (x) is multplied by ka.

Proof
If x is multiplied by k, the new function value is f (k ⋅ x). But

f (k ⋅ x) = b ⋅ (k ⋅ x)a = b ⋅ ka ⋅ xa = ka ⋅ b ⋅ xa = ka ⋅ f (x) .

So, the function value is multiplied by ka. ■

Example 5.7 Table 5.3 shows how the function f (x) = 4x3 increases. In

the formula for this function, the exponent is a = 3. Therefore, whenever

x is multiplied by 2, y is multiplied by 23, i.e. 8.

Table 5.3: Growth of f (x) = 4x3.

x y

1 4

2 32

4 256

8 2048

⋅2
⋅2
⋅2

⋅23

⋅23

⋅23
Example 5.8 A power function f (x) = b ⋅ x2 has a graph passing through

the point (3, 7). Here, we do not know the value of b, but we may still �nd

a second point on the graph.

If we multiply x by 4,
3

we get the new value 3 ⋅ 4 = 12. We can then �nd 3
There is nothing special about the number

4, it could have been any positive number.the new function value by multiplying the old value (7) by 42 (because the

exponent is a = 2). We then get

7 ⋅ 42 = 7 ⋅ 16 = 112 .

So, the graph of this function also passes through the point (12, 112).

Multiplying by a number corresponds to relative growth. If we multiply by

some number k, we have a relative growth of k − 1. It would make sense,

therefore, to write the number k in theorem 5.6 as 1 + rx , where rx is the

relative growth of the independent variable x . The number ry is then the

relative growth of the dependent variable y , and we get

k = 1 + rx og ka = 1 + ry .

We write this as a theorem:

Theorem 5.9

If the x-value of a power function f (x) = b ⋅ xa has a relative growth

of rx , the function value has a relative growth of ry , and

1 + ry = (1 + rx )a .
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Example 5.10 The function f (x) = 4.2 ⋅ x0.5 is an increasing function. If x
increases by 80%, we have rx = 0.80. I.e.

1 + ry = (1 + 0.80)0.5 = 1.342 .

ry must then equal 0.342, which corresponds to 34.2%. Therefore, each time

x increases by 80%, y increases by 34.2%.

Example 5.11 The function f (x) = 5x−2 is a decreasing function with

a = −2. If x increases by 40%, rx = 0.40, i.e.

1 + ry = (1 + 0.40)−2 = 0.510 .

This corresponds to

ry = 0.510 − 1 = −0.490 = −49% .

So, if x increases by 40%, y decreases by 49%.

Example 5.12 If we have a function f (x) = 2x3, and we know that y has

increased by 50%, how much did x then increase?

We solve this problem by setting ry = 0.50 in the formula, where we get

1 + 0.50 = (1 + rx )3 .

We then solve this equation,

1 + 0.50 = (1 + rx )3 ⇔
3√1.50 = 1 + rx ⇔

3√1.50 − 1 = rx ⇔
0.145 = rx .

Therefore, x increased by 14.5% if y increased by 50%.

5.3 Proportionality

Two variables y and x are said to be directly proportional when

y = k ⋅ x ,

where k is a constant. If we instead denote the constant by b, we get the

relationship

y = b ⋅ x = b ⋅ x1 ,

which means that y is a power function of x with a = 1.

In the same way, inverse proportionality is also a power function. Two

variables x and y are inversely proportional when x ⋅ y = k, which we may

also write as
44

We use the identity
1
xn = x

−n
to rewrite the

formula. y =
b
x
= b ⋅

1
x
= b ⋅ x−1 .

So, if y and x are inversely proportional to x , y is a power function of x
with a = −1.

We then have:
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Theorem 5.13

For a power function y = b ⋅ xa, we have:

1. If a = 1, y and x are directly proportional.

2. If a = −1, y and x are inversely proportional.

Therefore, a direct proportionality may be described by the power function

f (x) = b ⋅ x .

The graph of this function is a straight line through (0, 0),5 i.e. this is in
5
Strictly speaking x > 0 when f is a power

function, but in this case nothing prevents

us from letting x assume negative values.

fact also a linear function with slope b, intercepting the y-axis at 0.

So, direct proportionality may be viewed as a power function with exponent

1, but also as a linear function intercepting the y-axis at 0.

5.4 Exercises

Exercise 5.1
A power function f (x) has a graph passing through the

points (1, 3) og (4, 48).

Determine a formula for the function.a)

Solve the equation f (x) = 12.b)

Exercise 5.2
The graph of a power function f passes through the

points (4, 12) og (16, 48).

Determine a formula for this function.a)

What is the relative function growth when x has

a relative growth of 0.25?

b)

Exercise 5.3
A power function is given by f (x) = 3x2.4.

How many percent does the function value increase

when x increases by 7%?

Exercise 5.4
A power function is given by f (x) = 5 ⋅ x2.

If x is doubled, how many times larger will the

function value be?

a)

If the function value increases to 9 times its initial

value, how many times larger is x?

b)

Exercise 5.5
“If the price of a ticket is increased by 10% the number

of passengers will decrease by 3%.”

Write down a mathematical model of this

statement.

a)

How many percent will the number of passengers

decrease if the price of a ticket is increased by

15%.

b)

How many percent must the price of a ticket be

decreased if we want the number of passengers

to increase by 25%?

c)
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The function

f (x) = 3x2 + x − 4

belongs to the group of polynomials, which are a type of function used in

many branches of mathematics. This is because, as it turns out, polynomials

have certain nice properties.

In general, we de�ne a polynomial in this way:

De�nition 6.1

A polynomial is a function of the form

f (x) = anxn + an−1xn−1 + ⋯ + a1x + a0 ,

where the coe�cients a0, … , an are real numbers, and an ≠ 0.

The number n which must be a positive integer, is called the degree of

the polynomial.

Some examples of polynomials are:

First degree polynomial: f (x) = 3x + 1
Second degree polynomial: g(x) = 4x2 − 3x + 5
Third degree polynomial: ℎ(x) = x3 + 7x − 13
Fourth degree polynomial: m(x) = 8x4 + 7x2

Seventeenth degree polynomial: p(x) = x17 + 4x9 .

When we write the formula of a polynomial, we usually sort the terms,

so that the exponents are ordered and the largest is written �rst. This is

not stricly necessary, but it makes the task of determining the degree a lot

easier since the degree corresponds to the largest exponent.
1 1

A special case is the polynomials of de-

gree 0, which are the constant functions;

e.g. f (x) = 9 or g(x) = −14.Example 6.2 The polynomial f (x) = x + 4 − 3x2 may also be written as

f (x) = −3x2 + x + 4 ,

and here it is easy to see that f is a second degree polynomial.

First degree polynomials are actually linear functions, so we will skip them

in this chapter. Most of the chapter will instead deal with the properties of

second degree polynomials—with a concluding section on polynomials of

higher degree.

39



40 Polynomials

6.1 Second degree polynomials

A second degree polynomial is a polynomial of degree 2. According to

de�nition 6.1, this is a function of the form

f (x) = ax2 + bx + c , (6.1)

where a, b and c are three numbers, and a ≠ 0.22
In the de�nition, the coe�cients are de-

noted by a2, a1 and a0, but because a sec-

ond degree polynomial only has three coef-

�cients, it is easier to denote them by a, b
and c.

The simplest second degree polynomial imaginable is one where the coe�-

cients b and c are both 0, i.e.

p(x) = ax2 .

The graph of p(x) = ax2 is shown in �gure 6.1. A graph of this form is

called a parabola. As the �gure shows, the shape of the graph depends on

the value of the coe�cient a: If a > 0, the parabola opens upwards; if a < 0,

it opens downwards.

a > 0

a < 0

(0, 0)
(1)

(2)

Figure 6.1: The graph of p(x) = ax2 when

a > 0 and a < 0.

The reason is that x2 is always a positive number. The sign of the function

value, therefore, only depends on the sign of a.

The �gure also shows that the y-axis is a symmetry axis of this parabola.

The reason is that (−x)2 = x2, i.e. the polynomial p(x) has the same function

values for x and −x .

Lastly, we also see from the �gure that no matter what the value of a might

be, the parabola “changes direction” at the point (0, 0). We call this point

the vertex of the parabola.

If we want to draw a parabola with a vertex in (x0, y0), we can shift the

graph of p(x). This is shown in �gure 6.2. The new parabola will then have

the line x = x0 as its axis of symmetry.

x0

y0

(0, 0)

(x0, y0)

(1)

(2)

Figure 6.2: The graph of p(x) = ax2 shifted

to the graph of f (x) = a(x − x0)2 + y0.

Using theorem 1.13 we may derive the following:

Theorem 6.3

The parabola with (x0, y0) as its vertex is the graph of the function

f (x) = a(x − x0)2 + y0 .

Proof
We obtain the parabola with vertex at (x0, y0) by shifting the graph of the

parabola with vertex at (0, 0) by (x0, y0).

The parabola with vertex at (0, 0) is the graph of the function p(x) = ax2.
According to theorem 1.13, the parabola with vertex at (x0, y0), therefore,

is the graph of

f (x) = p(x − x0) + y0 = a(x − x0)2 + y0 . ■

The formula of the function in theorem 6.3 does not look like the second

degree polynomial in (6.1). But it turns out that it is possible to rewrite one

form into the other.
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Example 6.4 The graph of the function f (x) = 3 ⋅ (x − 2)2 − 7 is a parabola

with vertex at (2, −7).

If we square the parenthesis and reduce, we may rewrite the formula and

get

f (x) = 3(x − 2)2 − 7
= 3(x2 + (−2)2 − 2 ⋅ 2 ⋅ x) − 7
= 3(x2 + 4 − 4x) − 7
= 3x2 + 12 − 12x − 7
= 3x2 − 12x + 5 .

So, the formula f (x) = 3(x − 2)2 − 7 may also be written as

f (x) = 3x2 − 12x + 5 ,

which corresponds to (6.1) with the coe�cients

a = 3, b = −12 and c = 5 .

We can generalise the calculations in example 6.4 if we look at the second

degree polynomial f (x) = a(x − x0)2 + y0. We then get

f (x) = a(x − x0)2 + y0
= a(x2 + x20 − 2x0x) + y0
= ax2 + ax20 − 2ax0x + y0
= ax2 + (−2ax0)x + (ax20 + y0) .

If this has to correspond to the formula

f (x) = ax2 + bx + c ,

the coe�cients must be equal. This implies that

b = −2ax0 og c = ax20 + y0 . (6.2)

The equations (6.2) can be used to calculate the coe�cients b and c when

we know the vertex (x0, y0). Usually, we have the second degree polynomial

in the form (6.1), and we would therefore like to be able to calculate the

vertex when we know the three coe�cients a, b and c.

We want the formula for the vertex to be simple, so we introduce the

discriminant,3 3
The discriminant is used to calculate more

than just the vertex, so it makes sense to de-

�ne this quantity. It reappears in section 6.2

below.

d = b2 − 4ac .

We then have this theorem:

Theorem 6.5

The vertex of the second degree polynomial f (x) = ax2 + bx + c is at

(x0, y0), where

x0 = −
b
2a

and y0 = −
d
4a

.

d = b2 − 4ac is the discriminant.
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Proof
To prove the theorem, we look again at the equation (6.2). Here, we see

that

b = −2ax0 ⇔ −
b
2a

= x0 .

This proves the formula for x0.

Because c = ax20 + y0, we get

y0 = c − ax20 .

We have just shown that x0 = − b
2a , so

y0 = c − a (−
b
2a)

2

= c − a ⋅
b2

4a2
= c −

b2

4a

=
4ac
4a

−
b2

4a
=
4ac − b2

4a
= −

b2 − 4ac
4a

= −
d
4a

.

Thus, we have also proven the formula for y0. ■
1

1

(2, −3)

(1)

(2)

Figure 6.3: The graph f (x) = x2 − 4x + 1
has its vertex at (2, −3).

Example 6.6 The graph of the second degree polynomial

f (x) = x2 − 4x + 1

is shown in �gure 6.3. If we want to determine the vertex of this parabola,

we �rst �nd the coe�cients of the polynomial. They are

a = 1 , b = −4 and c = 1 .

We can now calculate the x-coordinate of the vertex:

x0 = −
b
2a

= −
−4
2 ⋅ 1

= 2 .

To calculate the y-coordinate, we �rst calculate the discriminant:

d = b2 − 4ac = (−4)2 − 4 ⋅ 1 ⋅ 1 = 12 .

Then, the y-coordinate of the vertex is

y0 = −
d
4a

= −
12
4 ⋅ 1

= −3 .

So, the parabola has its vertex at (2, −3), which we also see in the �gure.

6.2 Quadratic equations

A parabola may be placed, so that it intercepts the x-axis. The values

of x where the parabola intercepts the x-axis are called the roots of the

polynomial.

(1)

(2)

Figure 6.4: A parabola may have 2, 1 or no

roots.
Second degree polynomials may have 2, 1 or no roots, depending on how the

parabola is placed in the coordinate system. This is illustrated in �gure 6.4,
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where one of the parabolas intercepts the x-axis (2 roots), another parabola

just touches the x-axis (1 root), and the last parabola has no point in

common with the x-axis (no roots).

As noted above, we �nd the roots where the parabola intercepts the x-axis.

On the x-axis, y = 0, i.e. the roots are found where f (x) = 0. This means

that we can �nd the roots by solving the quadratic equation

ax2 + bx + c = 0 .

In this equation, it is not easy to see straight away, how we might isolate

x ; however, it is possible to derive a solution formula for such an equation.

Theorem 6.7

To solve the quadratic equation

ax2 + bx + c = 0 ,

we �rst calculate the discriminant d = b2 − 4ac.

We then have:

1. If d < 0, the equation has no solutions.

2. If d ≥ 0, the equation has the solutions x =
−b ±

√
d

2a
.

Proof
Combining theorem 6.3 and theorem 6.5, we �nd that the second degree

polynomial

f (x) = ax2 + bx + c

may be written as
4 4

We arrive at this expression by inserting

the formulas x0 = − b
2a and y0 = − d

4a into the

formula f (x) = a(x − x0)2 + y0.
f (x) = a (x − (−

b
2a))

2

+ (−
d
4a)

= a ⋅ (x +
b
2a)

2

−
d
4a

.

This means that the equation ax2 + bx + c = 0 may be written as

a ⋅ (x +
b
2a)

2

−
d
4a

= 0

If d ≥ 0, this equation may be rewritten
5

to
5
If d < 0, this equation cannot be solved.

Thus, the sign of the discriminant deter-

mines whether the equation has any solu-

tions or not.a ⋅ (x +
b
2a)

2

=
d
4a

⇔

(x +
b
2a)

2

=
d
4a2

⇔

(x +
b
2a)

2

= (

√
d
2a )

2

.

This equation is satis�ed if
6 6

There are two possible solutions because

(−ℎ)2 = ℎ2, which means that both −ℎ and

ℎ are solutions of the equation x2 = ℎ2.
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x +
b
2a

= ±
√
d
2a

.

We then isolate x and get

x +
b
2a

= ±
√
d
2a

⇔

x = −
b
2a

±
√
d
2a

⇔

x =
−b ±

√
d

2a
,

which proves the formula. ■

If we look at the formula in theorem 6.7, we notice that if d = 0, we only

have a single solution because
77

So, if the discriminant is 0, the solution to

the equation is x = − b
2a .

−b ±
√
0

2a
= −

b
2a

.

In this case, we say that the polynomial has a double root. This corresponds

to the situation where the parabola just touches the x-axis at a single point

(see �gure 6.4).

Next, we present a few examples of how to use the formula.

Example 6.8 To �nd the roots of the second degree polynomial

f (x) = 2x2 + 2x − 12 ,

we �rst �nd the coe�cients of the polynomial. They are

a = 2, b = 2 and c = −12 .

Next, we calculate the discriminant

d = b2 − 4ac = 22 − 4 ⋅ 2 ⋅ (−12) = 100 .

d is positive, so we have to roots. We calculate these using the formula:

x =
−b ±

√
d

2a
=
−2 ±

√
100

2 ⋅ 2
=
−2 ± 10
4

.
−3 1 2

4
(1)

(2)

Figure 6.5: The polynomial f (x) = 2x2 +
2x − 12 has the roots −3 and 2.

The two roots are

x =
−2 − 10
4

= −3 and x =
−2 + 10
4

= 2 ,

which is also illustrated in �gure 6.5.

Example 6.9 Here, we solve the equation

−x2 + 8x − 16 = 0 .
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The coe�cients are

a = −1 , b = 8 and c = −16 ,

and the discriminant is

d = b2 − 4ac = 82 − 4 ⋅ (−1) ⋅ (−16) = 0 .

Therefore, the equation has the solution

x = −
b
2a

= −
8

2 ⋅ (−1)
= 4 .

1

4
(1)

(2)

Figure 6.6: The polynomial f (x) = 3x2 +
2x + 1 has no roots.

Example 6.10 To �nd the roots of the polynomial

f (x) = 3x2 + 2x + 5 ,

we calculate the discriminant

d = b2 − 4ac = 22 − 4 ⋅ 3 ⋅ 5 = 4 − 60 = −56 .

Because the discriminant is negative, the polynomial has no roots. This is

illustrated in �gure 6.6.

Simple quadratic equations

It turns out that some quadratic equations can be solved without the solu-

tion formula. If either b or c is equal to 0, there is an easier way to solve

these equations.

Example 6.11 (b = 0) In the quadratic equation

3x2 − 75 = 0 ,

the coe�cient b = 0. We can then solve the equation like this:

3x2 − 75 = 0 ⇔
3x2 = 75 ⇔
x2 = 25 ⇔

x = ±
√
25 ⇔

x = ±5 .

Here, we only need to remember that there are two possible solutions when

we take the square root: a positive and a negative one.

Example 6.12 (c = 0) In the quadratic equation

2x2 + 14x = 0 ,

c = 0. Here, we can solve the equation by factorisation and use of the zero

product rule:

2x2 + 14x = 0 ⇔
2x ⋅ x + 7 ⋅ 2x = 0 ⇔
2x ⋅ (x + 7) = 0 ⇔
2x = 0 ∨ x + 7 = 0 ⇔
x = 0 ∨ x = −7 .
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6.3 Interpreting the coe�cients

There is a direct connection between the graph of a second degree polyno-

mial f (x) = ax2 +bx +c and the coe�cients a, b and c, and the discriminant

d . In this section, we take a closer look at this connection.

In section 6.1 above, we demonstrated that the sign of a determines whether

the parabola opens upwards or downwards.
88

The argument concerned the polynomial

p(x) = ax2, but f (x) = ax2 + bx + c is a shift

of p(x), so the same argument applies here. The x-coordinate of the vertex is x0 = − b
2a . Therefore, if a and b have the

same sign, x0 is negative. In this case, the vertex lies to the left of the y-axis.

For the same reason, the vertex must lie to the right of the y-axis when a
and b have di�erent signs.

If b = 0, we get x0 = − 0
2a = 0; in this case, the vertex lies on the y-axis.

If we let x = 0 in the formula for a second degree polynomial, we get

f (0) = a ⋅ 02 + b ⋅ 0 + c ,

i.e. the parabola passes through the point (0, c). So, c is the y-axis intercept.

The connection between the discriminant d and the parabola was discussed

in the previous section. Here, we showed that when d < 0, the parabola

does not intercept the x-axis.

All of these arguments lead to the following theorem:

Theorem 6.13

Let a second degree polynomial be given by

f (x) = ax2 + bx + c ,

and let d be the discriminant.

Then, the graph of the polynomial is a parabola, and the following

holds:

1. If a > 0, the parabola opens upwards; if a < 0, the parabola

opens downwards.

2. If a and b have the same sign, the vertex lies to the left of the

y-axis. If they have opposite signs, the vertex lies to the right of

the y-axis; and if b = 0, the vertex lies on the y-axis.

3. The parabola intercepts the y-axis at (0, c).

4. If d > 0, the parabola intercepts the x-axis twice; if d < 0, the

parabola does not intercept the x-axis; and if d = 0, the parabola

touches the x-axis at one point.
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6.4 Factoring polynomials

If a second degree polynomial f (x) = ax2 + bx + c has two roots, these are

given by

r1 =
−b +

√
d

2a
∧ r2 =

−b −
√
d

2a
.

In this case, we may also write the polynomial as

f (x) = a(x − r1)(x − r2) .

We say that we have factored the polynomial.
9 9

If we want to prove that this is correct, we

can reduce

a (x −
−b +

√
d

2a )(x −
−b −

√
d

2a )

and see, whether this yields ax2 + bx + c.

Example 6.14 If we want to factor the second degree polynomial f (x) =
3x2 − 3x − 6, we must �rst �nd its roots. To do this, we calculate the

discriminant,

d = b2 − 4ac = (−3)2 − 4 ⋅ 3 ⋅ (−6) = 81 .

The two roots are therefore

r1 =
−b +

√
d

2a
=
−(−3) +

√
81

2 ⋅ 3
= 2

and

r2 =
−b −

√
d

2a
=
−(−3) −

√
81

2 ⋅ 3
= −1 .

We can now factor the polynomial:

f (x) = a(x − r1)(x − r2)
= 3(x − 2)(x − (−1))
= 3(x − 2)(x + 1) .

When a polynomial is factored, we can see the roots straight away.
10

If a
10

If a second degree polynomial has one root

r , the factorisation will be f (x) = a(x − r)2,
and r is called a double root.

polynomial has no roots, it cannot be factored.

The two second degree polynomials f (x) = ax2+bx+c and p(x) = x2+ b
ax+

c
a

must have the same roots.
11

If we factor p(x), we then get
11

The reason is that whenever ax2+bx +c =
0, we must also have x2 + b

a x +
c
a = 0.

p(x) = (x − r1)(x − r2) ,

because the coe�cient of the second degree term is 1.

If we multiply these parentheses we get

p(x) = x2 − r1x − r2x + r1r2 = x2 − (r1 + r2)x + r1r2 .

This polynomial must be equal to the original polynomial, i.e. the coe�-

cients must be equal. Therefore,

−
b
a
= r1 + r2 ∧

c
a
= r1r2 .

Because the polynomial f (x) = ax2 + bx + c has the same roots, this must

also be true for the polynomial f .

We can use this to form educated guesses about the roots of a second degree

polynomial.
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Example 6.15 If we want to guess the roots of the polynomial f (x) =
4x2 − 12x + 8, we begin by calculating

−
b
a
= −

−12
4

= 3 ,

and

c
a
=
8
4
= 2 .

From the previous argument, we know that the sum of the roots (r1 + r2)
must be equal to 3, while their product (r1r2) must be equal to 2. This is

only true for the numbers 1 and 2, and therefore these are the roots.

We sum up our results in the following theorem:

Theorem 6.16

If a second degree polynomial f (x) = ax2 + bx + c has at least one root,

we can factor the polynomial, i.e. write it in the form

f (x) = a(x − r1)(x − r2) ,

where r1 and r2 are the two roots (if there is only one root, then r1 = r2).

The two roots also satisfy the equations

r1 + r2 = −
b
a
,

and

r1r2 =
c
a
.

6.5 Polynomials of higher degree

Polynomials of a degree higher than 2 are not as simple to describe. Fig-

ure 6.7 shows graphs of polynomials of degree 3 to 6. As the �gure shows,

the graphs “turn” more often, the higher the degree of the polynomial. The

points where the polynomials turn are known as turning points.1212Turning points then becomes a collective

term for maxima and minima.

Because the graphs may have many turning points, it is possible for the

graphs to intercept the x-axis many times. We cannot, therefore, �nd

simple solution formulas for the roots.
1313

Solution formulas exist for the roots of

third and fourth degree polynomials, but

they are anything but simple. For polynomi-

als of degree 5 or higher, it has been proven

that it is impossible to �nd a general solu-

tion formula.[3]

In the previous section, we demonstrated how to factor second degree

polynomials. It is also possible to factor polynomials of a higher degree

if we know the roots. In general, if r is a root in the polynomial p(x), we

may write p(x) as

p(x) = (x − r) ⋅ q(x) ,

where q(x) is also a polynomial. The degree of q is 1 less than the degree

of p. So, if p is a fourth degree polynomial, q is a third degree polynomial,

etc.

This implies that a polynomial of degree n can have at most n roots. We

have the following theorem:
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(1)

(2)

(a) A third degree polynomial.

(1)

(2)

(b) A fourth degree polynomial.

(1)

(2)

(c) A �fth degree polynomial.

(1)

(2)

(d) A sixth degree polynomial.

Figure 6.7: Here, we see the graphs of four

polynomials of a degree higher than 2. As

the �gure shows, the graphs “turn” more,

the higher the degree.

Theorem 6.17

1. A polynomial of degree n has at most n roots.

2. An equation of degree n has at most n solutions.

Because no general solution formulas for the roots of a polynomial of

degree n exist, we need to use di�erent approaches. CAS’s usually have a

built-in “factor” function, which can be used to factor polynomials.

Example 6.18 We can rewrite the polynomial f (x) = 2x3 − 16x2 + 2x + 84
using a CAS, and get

f (x) = 2 ⋅ (x + 2) ⋅ (x − 3) ⋅ (x − 7) ,

which immediately shows us that this third degree polynomial has the

roots −2, 3 and 7.

Example 6.19 We can use a CAS to factor the fourth degree polynomial

f (x) = x4 − x3 − 19x2 − x − 20. We get

f (x) = (x − 5) ⋅ (x + 4) ⋅ (x2 + 1) .

So, the polynomial has the two roots −4 and 5.

We cannot factor this polynomial any further because the second degree

polynomial x2 + 1 has no roots. This is also the reason why the polynomial

has only two roots, even though f (x) is a fourth degree polynomial.
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In the example above, we looked at a fourth degree polynomial which had

only 2 roots. It is actually possible to construct a fourth degree polynomial

which has no roots at all. This is, however, impossible for a �fth degree

polynomial. Figure 6.7 hints at the reason. We infer from this �gure that a

polynomial of odd degree always has at least one root.

We can use factorisation to construct a polynomial with speci�c roots. This

concluding example shows how:

Example 6.20 We construct a third degree polynomial with the roots −1,
4 and 7 by writing

f (x) = (x − (−1)) ⋅ (x − 4) ⋅ (x − 7) .

If we multiply the parentheses, we get

f (x) = x3 − 10x2 + 17x + 28 .

6.6 Exercises

Exercise 6.1
Which of these functions are polynomials? And what is

their degree?

f1(x) = x2 + 6x − 2a)

f2(x) = x + 5x8 − 1 + x2b)

f3(x) = x−3 + 2x6 − 6xc)

f4(x) = 7d)

f5(x) = 2x − x2e)

f6(x) = 213x89 364 521f)

f7(x) = x
3
2 + 4x

7
10g)

Exercise 6.2
Find the vertices (x0, y0) of the graphs of the second

degree polynomials below. Then, rewrite the formulas

to the form f (x) = ax2 + bx + c .

f1(x) = (x − 4)2 + 3a)

f2(x) = −2 (x − 1)2 + 7b)

f3(x) = 3 (x + 3)2 + 3c)

Exercise 6.3
Find the vertex (x0, y0) of the graphs of the second de-

gree polynomials below. Then, rewrite the formulas to

the form g(x) = ax2 + bx + c .

g1(x) = 2 (x − 2)2 + 4a)

g2(x) = −2 (x − 2)2 + 4b)

g3(x) = 9 (x + 1)2 + 5c)

g4(x) = 1
3 (x + 6)

2 + 12d)

Exercise 6.4
Calculate the vertices of each of the second degree poly-

nomials below.

f1(x) = x2 − 2x + 2a)

f2(x) = −x2 + 5b)

f3(x) = −3x2 + 12x − 13c)

f4(x) = 1
2x

2 + 2x + 4d)

f5(x) = −4x2 + 24x + 35e)

f6(x) = 3
2x

2 − 6x + 6f)



6.6 Exercises 51

Exercise 6.5
Find the coe�cients a, b and c for each of the equations.

Then, calculate d and solve the equations:

2x2 + 4x − 16 = 0a) −x2 − 2x + 3 = 0b)

2x2 − 4x + 6 = 0c) 4x2 − 6x − 4 = 0d)

2x2 + 6 = 8xe) 2x + 15 = x2f)

Exercise 6.6
Solve the following equations without any tools:

−x2 + x − 1 = 0a) 4x2 − 2x − 12 = 0b)

3x2 − 6x + 3 = 0c) x2 − x − 6 = 0d)

Exercise 6.7
Solve the equations below—or explain why they have

no solution. The zero product rule is useful for some of

the equations.

2x2 = 0a) (x − 1)2 = 0b)

7(x + 2)2 = 0c) 2x2 = 8d)

x2 − 5x = 0e) 3x2 − 27x = 0f)

2x2 + 50x = 0g) x2 + 6 = 0h)

Exercise 6.8
Solve the following equations—or explain why they have

no solutions:

−5x2 = 0a) (2x − 4)2 = 0b)

−3(x + 3)2 = 0c) 3x2 = 48d)

x2 + 1
2x = 0e) 3x2 − 27 = 0f)

7x2 + 51 = 0g) −x2 + 36 = 0h)

Exercise 6.9
Below, you see formulas for a series of second degree

polynomials:

f1(x) = 2x2 + 3xa)

f2(x) = −3x2 + x + 1b)

f3(x) = − 34x
2 + 2x + 4c)

f4(x) = −x2 + 4d)

f5(x) = 4x2 + 2x + 3e)

f6(x) = 2
5x

2 + x + 1f)

The graphs of these functions are parabolas. Order them,

so that the steepest parabola opening upwards is �rst,

and the steepest opening downwards is last.

Exercise 6.10
Find the x-axis intercepts and the vertices of the follow-

ing second degree polynomials:

f1(x) = 3x2 − 3a)

f2(x) = 2x2 + 7x + 2b)

f3(x) = − 14x
2 − 6x + 5c)

f4(x) = − 13x
2 − xd)

f5(x) = −3x2 + 6x − 7e)

f6(x) = 1
2x

2 − 1
2x − 1f)

Exercise 6.11
P1, P2, P3, P4 and P5 are graphs of di�erent second de-

gree polynomials, which may be written in the form

f (x) = ax2 + bx + c

The discriminant is denoted by d .

P1
P2

P3 P4
P5

In each of the cases, determine the signs of a, b, c and d
from the graphs in the �gure.

Let a1 denote the coe�cient of the second degree term

of P1, etc. List a1, a2, a3, a4, a5 and a7 in descending

order.

Exercise 6.12
Factor the following second degree polynomials:

f (x) = x2 − x − 30a)

g(x) = 1
2x

2 − x − 4b)

ℎ(x) = 3x2 + 6x − 429c)

Exercise 6.13
Write a formula for the second degree polynomial whose

graph passes through the given points:

(1, 0), (5, 0) and (0, 3)a) (−1, 0), (3, 0) and (1, 2)b)
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Exercise 6.14
Use a CAS to factor the following polynomials, and

determine their roots:

x4 − 3x3 + 5x2 − 9x + 6a)

x6 − x4 − 16x2 + 16b)

2x5 − 2x4 − 94x3 + 202x2 + 452x − 560c)

1
2x

3 − 5x2 − 16x + 48d)

Exercise 6.15
Write a formula for a third degree polynomial with the

roots −2, 3 and 7.

Exercise 6.16
The fourth degree polynomial f has the roots −3, 0, 1

and 5, and the graph of the polynomial passes through

(−1, 8).

Determine a formula for this polynomial.

Exercise 6.17
The graph of a third degree polynomial passes through

the points (−1, 0), (0, 3), (6, 0) and (7, 4).

Determine a formula for this polynomial.

Exercise 6.18
The �gure below shows the graph of the polynomial f .

1

1

f

(1)

(2)

What is the least possible value of the degree of

f ?

a)

It is given that the degree of f is 4, and the coe�cient

of x4 is
1
5 .

Determine a formula for f .b)
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The trigonometric functions are a group of functions which can be used

to describe oscillations, but are also used in geometry. In this chapter,

we describe the three trigonometric functions sine (sin), cosine (cos) and

tangent (tan), and their inverse functions.

The de�nition of these three functions is based on the so-called unit circle.
This is a circle with radius 1 and its centre at (0, 0) in a coordinate system,

see �gure 7.1.

x is in this case not the usual x-coordinate, but rather the length of the arc

counter-clockwise from the point (1, 0), see �gure 7.1 (if we move clockwise,

x is negative).
−1 1

−1

1

x

(1)

(2)

Figure 7.1: The unit circle and the arc

length x .

If we move x along the unit circle, we arrive at the point P . The cosine and

the sine are de�ned to be the �rst and second coordinates of this point, see

�gure 7.2. The tangent is the ratio between the sine and the cosine.

-1 cos(x)1

-1

sin(x)
1 P

x

(1)

(2)

Figure 7.2: The de�nition of cos(x) and

sin(x).

So, we de�ne the three functions in this way:

De�nition 7.1

Let P be the end point of the arc of length x . Then

1. cos(x) equals the �rst coordinate of P .

2. sin(x) equals the second coordinate of P .

3. tan(x) = sin(x)
cos(x) .

Note that tan(x) is only de�ned when cos(x) ≠ 0.

The unit circle is a circle with radius 1. We can use the radius to calculate

its circumference, which is 2πr = 2π ⋅ 1 = 2π. I.e. if the arc length is π, the

arc corresponds to half a circle, and the coordinates of P are (−1, 0). If the

arc length is −π2 , then we have moved a quarter of a circle clockwise, and

the coordinates of P are (0, −1). Figure 7.3 shows some corresponding arc

lengths and coordinates.

Because sin(x) and cos(x) are the coordinates of a point on the unit circle,

which has radius 1, it follows that both sin(x) and cos(x) must have values

between −1 and 1, i.e. that

−1 ≤ cos(x) ≤ 1 and − 1 ≤ sin(x) ≤ 1 .

53
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0.2 1

0.2

1π

(−1, 0)

0.873

(0.643, 0.766)

− π
2

(0, −1)

−0.524
(0.866, −0.5)

(1)

(2)

(a) End points of di�erent arcs.

x cos(x) sin(x)

−π2 0 −1
−0.524 0.866 −0.5
0.873 0.643 0.766

π −1 0

(b) Table of corresponding values.

Figure 7.3: The �gure on the left shows

a series of coordinates of end points of a

series of di�erent arcs. The table on the

right lists the same information, but here

the coordinates are shown to be the values

of the cosine and the sine of the di�erent

values of x .

Investigating the symmetry of the unit circle, we may arrive at the following

theorem, which we will not prove:

Theorem 7.2

The following identities hold:

1. cos (π2 − x) = sin(x)

2. sin (π2 − x) = cos(x)
3. cos(−x) = cos(x)

4. sin(−x) = − sin(x)

5. cos(π − x) = − cos(x)

6. sin(π − x) = sin(x)

Because the radius of the unit circle is 1, we have the following identity

between the cosine and the sine, which can be derived from the Pythagorean

theorem:

Theorem 7.3: Pythagorean identity

We have

cos(x)2 + sin(x)2 = 1 .

7.1 Graphs of the trigonometric functions

We may treat the cosine and sine as any other mathematical function, e.g.

we may draw their graphs. The graphs of these two functions are shown

in �gure 7.4.

−3π −2π − π π 2π 3π
−1

1

(1)

(2)

−3π −2π − π π 2π 3π
−1

1

(1)

(2)

Figure 7.4: The graphs of cos(x) (above)

and sin(x) (below).

Because the circumference of the unit circle is 2π, we might be tempted

to assume that x can only have a value of 2π or less; but this is not true.

Values of x larger than 2π simply correspond to more than a whole turn in

the circle; while the negative values correspond to clockwise movement.

This means that the function values will repeat themselves for each whole

turn in the circle—we describe this in more detail in the next section.

On the graphs the x-axis is labeled in units of π. We do this because these

are the values of x where the graphs intercept the x-axis or have maxima

and minima. If the x-value is a fraction of π, we may also in many cases
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calculate the exact values of cos(x) and sin(x). Some of the exact function

values of cos(x) and sin(x) are listed in table 7.5.

Table 7.5: Function values of cos and sin.

x cos(x) sin(x)

−π −1 0
−π2 0 −1
0 1 0
π
4

√
2
2

√
2
2

π
3

1
2

√
3
2

π
2 0 1
π −1 0
3π
2 0 −1
2π 1 0

Periodicity

Looking at the graphs of the two functions, we see that they are periodic.

A function is called periodic if the function “repeats itself”. The graphs of

cos(x) and sin(x) show that every time x increases or decreases by 2π, we

�nd the same function values.

The reason for this behaviour is that the cosine and the sine are based

on the unit circle, and 2π corresponds to exactly one turn of the circle.

Therefore, cos(x) and sin(x)will have the same value whenever x increases

or decreases by some integer times 2π, i.e.

cos(x + k ⋅ 2π) = cos(x)
sin(x + k ⋅ 2π) = sin(x) where k is integer .

We say that these functions are periodic with period T = 2π. We can also

�nd the period as the distance between two crests of the wave on the graph.

Because these two functions are periodic, they can be used to describe a

range of di�erent natural phenomena, which display a repeating pattern,

e.g. waves or oscillations.

Tangent

We have yet to mention the tangent. The graph of tan(x) is shown in

�gure 7.6. As the �gure shows, the function values approach ∞ resp. −∞
whenever x approaches ±π2 , ± 3π2 , ± 5π2 etc.

The reason is that tan(x) is de�ned to be

tan(x) =
sin(x)
cos(x)

,

and at these values of x , cos(x) = 0.

−3π −2π − π π 2π 3π

1
(1)

(2)

Figure 7.6: The graph of tan(x).
As the �gure shows, the function tan(x) is periodic with period π.

7.2 Oscillations

As previously mentioned, the trigonometric functions can be used to de-

scribe oscillations. Many oscillations can be described by “wave-shaped”

graphs, which look like the graphs of the cosine and the sine (see �gure 7.4).

Functions that have these types of graph, are of the form f (x) = a⋅sin(bx+c).
We therefore de�ne a sine wave in the following way:

De�nition 7.4

A sine wave is the graph of a function of the form

f (x) = a ⋅ sin(bx + c) ,

where a > 0, b > 0 and c are arbitrary numbers.
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We can now investigate how the constants a, b and c a�ect the appearance

of the graph.

Figure 7.7 shows the graphs of the three functions

f (x) = sin(x) , g(x) = 2 sin(x) and ℎ(x) = 4 sin(x) .

The only di�erence between these functions is the value of the number a.

As we can see, the graphs all have the same shape, but not the same height.

This means that the number a determines the height of the waves—i.e. the

distance from the x-axis to the wave crests—in the graph.
−3π −2π − π π 2π 3π

−4

−2

2

4

f

g

ℎ

(1)

(2)

Figure 7.7: The graphs of f (x) = sin(x),
g(x) = 2 sin(x) and ℎ(x) = 4 sin(x).

Next, we investigate 3 functions with di�erent values of b. We look at

f (x) = 3 sin(x) , g(x) = 3 sin ( 12x) and ℎ(x) = 3 sin(2x) .

−3π −2π − π π 2π 3π

−4

−2

2

4 f g

ℎ

(1)

(2)

Figure 7.8: The graphs of f (x) = 3 sin(x),
g(x) = 3 sin ( 12x) and ℎ(x) = 3 sin(2x).

As the �gure shows, the three graphs have the same wave height—because

they all have a = 3—but they do not oscillate equally fast, i.e. their periods
are di�erent.

The function sin(x) has a period of 2π. I.e. when x increases from 0 to 2π,

the graph completes exactly one oscillation. But what about the function

f (x) = a ⋅ sin(bx)? This function must complete one oscillation, when bx
increases from 0 to 2π.

Therefore, we solve the two equations bx = 0 and bx = 2π, and get

bx = 0 ⇔ x = 0

bx = 2π ⇔ x =
2π
b
.

So, the period of the function corresponds to an increase in x from 0 to

2π
b . A larger value of b therefore leads to a smaller period, which is also

evident in �gure 7.8. We now know that the period T is T = 2π
b .

We can also investigate the meaning of the last number, c, by drawing

graphs of functions with di�erent values of c, see �gure 7.9. The three

functions are given by

f (x) = 3 sin ( 12x) , g(x) = 3 sin ( 12x + 2) and ℎ(x) = 3 ( 12x − 1) .

As we can see, the three graphs are horizontal shifts of each other. Because

sin(x) intercepts the x-axis when x = 0, the graph of a⋅sin(bx+c) intercepts

the x-axis when bx + c = 0, i.e. when x = − cb . We call this number the

phase, and it shows where the graph intercepts the x-axis the “�rst time”.

Because the graph intercepts the x-axis for each half period, we can �nd

the other intercepts by adding half a period a number of times (or subtract

it a number of times).

The period is T = 2π
b , so half a period is

π
b , and the graph therefore intercepts

the x-axis at

… ,
−c − 2π

b
,
−c − π
b

, −
c
b
,
−c + π
b

,
−c + 2π

b
,
−c + 3π

b
, … .

−3π −2π − π π 2π 3π

−4

−2

2

4

f

g

ℎ

(1)

(2)

Figure 7.9: Graphs of sine waves with dif-

ferent values of c.
We sum up our results in this theorem:
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Theorem 7.5

For the function f (x) = a ⋅ sin(bx + c),

1. a is equal to the amplitude, i.e. the distance from the x-axis to

the wave crests,

2. the period (i.e. the distance from one wave crest to the next)

equals
2π
b , and

3. the phase equals − cb .

Example 7.6 The function f is given by

f (x) = 4.5 ⋅ sin(0.43x + 1.2) .

The graph of the function is shown in �gure 7.10.
−2.8 2

2

14.6

4.5

(1)

(2)

Figure 7.10: The graph of the sine wave

f (x) = 4.5 ⋅ sin(0.43x + 1.2).

f has an amplitude of a = 4.5, i.e. the height of the waves is 4.5 above the

x-axis.

The constant b = 0.43, so the period is

T =
2π
0.43

= 14.6 .

The phase can be calculated from c = 1.2, and we get

−
c
b
= −

1.2
0.43

= −2.8 .

Therefore, the graph intercepts the x-axis at −2.8. If we want to �nd the

other intercepts, we need to add half a period (i.e.
1
2 ⋅ 14.6 = 7.3) or subtract

it a number of times.

The cosine

The graph of the cosine is also a wave. But according to theorem 7.2,

cos(x) = cos(−x) = cos (π2 − x −
π
2 ) = cos (

π
2 − (x + π

2 )) = sin (x +
π
2 ) .

So, the cosine is actually a sine with a phase of −π2 . Therefore, any oscillation

which is described by a cosine, might just as well be decribed by a sine.

7.3 Degrees and radians

The sine and the cosine was de�ned above using arc lengths in the unit

circle. But we could also have de�ned them using the angles spanned by

the arcs. Actually, we could measure the size of an angle by the length

of the corresponding arc in the unit circle. When we do this, we say that

we measure the angle in radians. If we would rather measure the angle in

degrees, it is relatively simple to convert one measurement to the other.

A complete circle corresponds, as we know, to an angle of 360°.1 1
There is no mathematical reason for the

number 360. It is actually a relic of the an-

cient babylonian base-60 number system.[2]Because the circumference of the unit circle is 2π, 2π radians must cor-

respond to 360°. And a right angle (90°) must correspond to
π
2 radians.
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Figure 7.11 shows corresponding angles measured in degrees and in radi-

ans.

− 5π
6

−150°

− 3π
4

−135°

− 2π
3

−120°

− π
2

−90°

− π
3

−60°
− π
4

−45° − π
6

−30°

00°

π
6

30°

π
4

45°

π
3

60°

π
2

90°

2π
3

120°

3π
4

135°
5π
6

150°

π 180°

Figure 7.11: The relationship between de-

grees and radians.

Because 2π radians corresponds to a complete circle, and 360° is also a

complete circle, we get

360° = 2π ⇔ 1° =
π
180

,

i.e. we can convert degrees to radians by multiplying by
π
180° . And we can

convert radians to degrees by multiplying by the inverse fraction
180°
π .

Example 7.7 What is the angle 36° in radians?

To answer this we calculate

36° ⋅
π
180°

=
36π
180

=
π
5
≈ 0.628 .

So, 36° corresponds to
π
5 radians. I.e. an angle of 36° spans an arc of length

0.628 in the unit circle, see �gure 7.12.

1

1

0.628

36°
(1)

(2)

Figure 7.12: 36° corresponds to 0.628 radi-

ans.

If we view the trigonometric functions as mathematical functions, we would

never use degrees to measure the angles. But trigonometric functions are

also used to solve geometric problems, where we use them in formulas

involving lengths and angles—and here, it would be natural to measure the

angles in degrees, and not in radians.

7.4 Inverse trigonometric functions

In this section, we describe the so-called “inverse trigonometric functions”

sin−1, cos−1 and tan−1.2 The three functions are used to solve equations
2
The three functions are also sometimes de-

noted by arccos, arcsin og arctan, because

we use them to �nd the arc. E.g. arcsin gives

the arc corresponding to a certain value of

the sine.

In computer programmes or CAS’s, the

three functions are often denoted by asin,

acos and atan.

where we know the value of the sine, the cosine or the tangent and the arc

length is unknown.

Example 7.8 To solve the equation cos(x) = 0.8, we use cos−1:

cos(x) = 0.8 ⇔ x = cos−1(0.8) .

We use a calculator to �nd cos−1(0.8), and get

x = cos−1(0.8) = 0.644 .

Example 7.9 We solve the equation sin(B) = 0.5 like this:

sin(B) = 0.5 ⇔ B = sin−1(0.5) = 0.524 .

As the examples show, we only get one solution. But the cosine and the

sine are periodic functions, which means that the equations actually have

in�nitely many solutions. But of course a calculator can only give us one

answer. The question is, which solution do we get?

As it turns out,

1. cos−1 always yields results in the interval from 0 to π.
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2. sin−1 always yields results in the intervald from −π2 to
π
2 .

3. tan−1 always yields results in the interval from −π2 to
π
2 .

Therefore, if we want other solutions, we need to think carefully—or solve

the equations graphically or using a CAS.

7.5 Equations involving cos and sin

In this section, we show how to �nd every solution to an equation involving

the cosine or the sine. Because these functions are periodic, equations

involving them will often have more than one solution—typically in�nitely

many solutions.

E.g. if we wish to solve the equation sin(x) = a, where a is some number,

one of the solutions will be

x = sin−1(a) .

But—as we mentioned previously—this is only the solution between −π2
and

π
2 .

3
Figure 7.13 shows the unit circle, where we see that there is also a

3
Corresponding to −90° and 90°.

solution given by

x = π − sin−1(a) .

1

a

1

sin−1(a)

π − sin−1(a)

(1)

(2)

Figure 7.13: The equation sin(x) = a has

two solutions between 0 and 2π.

Because we can add 2π to x and get the same function values of the sine,

the equation sin(x) = a must have the solutions

x = sin−1(a) + k ⋅ 2π ∨ x = π − sin−1(a) + k ⋅ 2π , k ∈ ℤ .

Using the same type of argument for the equation cos(x), we get the fol-

lowing theorem:
4 4

Note that we must have −1 ≤ a ≤ 1 because

the function values of cos and sin are in this

interval.Theorem 7.10

When −1 ≤ a ≤ 1, we have:

1. The equation cos(x) = a has the solutions

x = cos−1(a) + k ⋅ 2π ∨ x = − cos−1(a) + k ⋅ 2π , k ∈ ℤ .

2. The equation sin(x) = a has the solutions

x = sin−1(a) + k ⋅ 2π ∨ x = π − sin−1(a) + k ⋅ 2π , k ∈ ℤ .

Example 7.11 The solutions to the equation

sin(x) = 0.7

may be determined graphically by drawing the graph of sin(x) and the

line with equation y = 0.7, and then �nding the x-coordinates of the

intersection points (see �gure 7.14).

−3π −2π − π π 2π 3π
−1

1

(1)

(2)

Figure 7.14: The solutions to sin(x) = 0.7
are found by drawing the graph of sin(x)
and the line with equation y = 0.7, and

�nding the x-coordinates of the intersection

points.

According to theorem 7.10, this equation has the solutions

x = sin−1(0.7) + k ⋅ 2π ∨ x = π − sin−1(0.7) + k ⋅ 2π , k ∈ ℤ ,



60 Trigonometric functions

i.e.
55

Here, we calculate the actual values of

sin−1(0.7) and π − sin−1(0.7). x = 0.7754 + k ⋅ 2π ∨ x = 2.3662 + k ⋅ 2π , k ∈ ℤ .

Example 7.12 The equation

3 cos(x) − 1 = 0.8

can be solved by �rst isolating cos(x):

3 cos(x) − 1 = 0.8 ⇔ 3 cos(x) = 1.8 ⇔ cos(x) = 0.6 .

Next, we use theorem 7.10, and we get

x = cos−1(0.6) + k ⋅ 2π ∨ x = − cos−1(0.6) + k ⋅ 2π , k ∈ ℤ ,

which reduces to

x = 0.9273 + k ⋅ 2π ∨ x = −0.9273 + k ⋅ 2π , k ∈ ℤ .

Example 7.13 The solutions to the equation

sin(2x − 1) = 0.3

may be found by using theorem 7.10. We have 2x −1 inside the parenthesis,

which means

2x − 1 = sin−1(0.3) + k ⋅ 2π ∨ 2x − 1 = π − sin−1(0.3) + k ⋅ 2π , k ∈ ℤ .

In both of these equations, we isolate x :

x =
sin−1(0.3) + k ⋅ 2π + 1

2
∨ x =

π − sin−1(0.3) + k ⋅ 2π + 1
2

.

We reduce and get

x =
1.3047 + k ⋅ 2π

2
∨ x =

3.8369 + k ⋅ 2π
2

,

i.e.

x = 0.6524 + k ⋅ π ∨ x = 1.9185 + k ⋅ π , k ∈ ℤ .

Looking at the unit circle and using a similar argument to the one above,

we arrive at the following theorem, which we will not prove here:

Theorem 7.14

The equation tan(x) = a has the solutions

x = tan−1(a) + k ⋅ π , k ∈ ℤ .

Example 7.15 We solve the equation

tan(x) = 0.5

by using theorem 7.14:

x = tan−1(0.5) + k ⋅ π , k ∈ ℤ ,

i.e.

x =
π
4
+ k ⋅ π , k ∈ ℤ .



7.6 Exercises 61

Example 7.16 The equation

4 tan(x) + 7 = 10

can also be solved using theorem 7.14. We just need to isolate tan(x) �rst:

4 tan(x) + 7 = 10 ⇔ 4 tan(x) = 3 ⇔ tan(x) =
3
4
.

We then use the theorem and get

x = tan−1 (
3
4)

+ k ⋅ π , k ∈ ℤ ,

i.e.

x = 0.6435 + k ⋅ π , k ∈ ℤ .

7.6 Exercises

Exercise 7.1
Calculate the following and illustrate the numbers on

the unit circle:

cos (π2 )a) sin (π4 )b)

sin(2.7)c) cos(−5.3)d)

sin(1)e) cos (−π3 )f)

Exercise 7.2
Determine those values of x , where cos(x) = sin(x).

Exercise 7.3
Use the Pythagorean identity to determine tan(x) when

sin(x) = 0.2a) cos(x) = 0.6b)

Exercise 7.4
Use the Pythagorean identity to determine sin(x) when

cos(x) = 0.4a) tan(x) = 2b)
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Exercise 7.5
The graph of the function f is shown below. The formula

for f is of the form

f (t) = A sin(!t + �)

Use the graph to determine the constants A, ! and �.

1 π 2π

1

f (t)

(1)

(2)

Exercise 7.6
In the following questions, the graph of f (t) = sin(t) is

shown along with the graphs of two other functions g
and ℎ.

The graph of the function g is shown below. The

formula for g has the form

g(t) = A sin(!t + �)

Use the graph to determine the constants A, !
and �.

1 π 2π

1

f (t)

g(t)

(1)

(2)

a)

The graph of the function ℎ is shown below. The

formula for the function is of the form

ℎ(t) = A sin(!t + �) + b

Use the graph to determine the constants A, !, �
and b
(Note that the period of ℎ is π).

1 π 2π

1

f (t)

ℎ(t)

(1)

(2)

b)

Exercise 7.7
Draw the graph of each function, and determine the

amplitude and the period of each:

f (x) = 2 ⋅ sin( 13x + 1)a)

g(x) = 1
4 ⋅ sin(3x − 2)b)

ℎ(x) = 3 ⋅ sin(4x + π
2 )c)

k(x) = 5 ⋅ sin( 12x + π)d)

Exercise 7.8
The �gure shows a swinging pendulum.

x

P

0

The horizontal position of the pendulum is given by

x = 4 ⋅ sin ( 13 t − 1) , 0 < t < 10π

Determine the maximum and minimum value of

x .

a)

Determine the amplitude and the period.b)

Determine for which intervals of time, x > 3.c)

Exercise 7.9
In the interval [0; 2π], solve the equation sin(x) = 0.731.

Illustrate the solution in the unit circle.

Exercise 7.10
In the interval [−π; π], determine the solutions to the

equation

cos(2t) = 0.634

Exercise 7.11
Find all of the solutions to the equations:

cos(3x) = 0.7a) 3 sin(2x − 1) = 1.5b)

Exercise 7.12
Solve each of the equations:

tan(x) = −1.72a)
1

tan(x) = 0.27b)



ASet theory

Set theory is one of the fundamental areas of mathematics which is used

in almost every other area (e.g. the concept of a function, or probability

theory). In this appendix, we will describe brie�y some of the central

concepts of set theory.

A.1 Sets

A mathematical set can be de�ned as a collection of objects. In principle,

an “object” may be anything, but here we will restrict ourselves to sets of

numbers.

A set can be de�ned this way:

De�nition A.1

A set is a well-de�ned collection of mutually di�erent objects.

Note that the objects in the set have to be di�erent. Thus, we cannot create

a set of four 2’s; there can be only one.

Sets are usually denoted by uppercase letters, e.g. the set S. If we want to

show that this set consists of the numbers 1, 2, 3, and 10, we write

S = {1, 2, 3, 10} . (A.1)

The curly brackets { } are also called “set brackets” or “braces”.
1 1

When we write a set like this, we do not

need to list the numbers in any particular

order, i.e. {1, 2, 3} and {3, 1, 2} is the same

set.

We see that the set includes the number 3. If we want to state this fact, we

write

3 ∈ S ,

which is read “3 is in S” or “3 is an element of S”.

If we want to say the exact opposite of this, we can negate the symbol by

crossing it out. Therefore, if we want to state that 7 is not an element of S,

we write

7 ∉ S .

Large sets

Sometimes sets contain many numbers. If this is the case, it might be

overwhelming to list all the numbers like we did in (A.1), and it might also

63
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be quite impossible to get a clear idea of the set. E.g. if we want to write the

set H of every positive integer between 0 and 100, we may instead write

H = {1, 2, 3, … , 100} .

We write just enough numbers for the reader to discern the pattern, and

then we write the last number. The dots . . . are then written instead of all

the numbers in between.

We may even have sets that are “limitless”. The set of every positive, odd

number contains in�nitely many elements. We may write this set as

O = {1, 3, 5, 7, …} .

Special sets

Some sets are used so often in set theory that we de�ne special symbols

for them. These sets are

∅ the empty set, which is a set containing no elements,

ℕ the natural numbers, the set of all positive integers, ℕ = {1, 2, 3, 4, 5, …}
(note that 0 is not an element of this set),

ℤ the integers, the set ℤ = {… , −2, −1, 0, 1, 2, 3, …},

ℚ the rational numbers, the set of all numbers which may be expressed as

fractions, e.g.
1
7 and − 52 , and

ℝ the real numbers, the set containing every number on the number line.

Some of the numbers in ℝ are −1, 16 , π, e and

√
2.

It is noteworthy that every natural number is also an integer, i.e. the set ℕ
is a part of the set ℤ. In the same way, the set of integers ℤ is a part of the

set of rational numbers ℚ,
2

and the set of rational numbers is a part of the
2
The reason is that every integer may be

written as a fraction, e.g. 2 = 6
3 and −4 = − 8

2 .
set of real numbers (see �gure A.1).

ℕℤℚℝ

Figure A.1: Every natural number is also

an integer, and every integer is a rational

number, etc.

A.2 Set-builder notation

It is sometimes useful to describe a set by giving a condition (or more)

which the elements of the set satisfy. An example of this might be the set

A ∶ every number between 1 and 6 .

We can write this using the so-called set-builder notation

A = {x ∈ ℝ | 1 < x < 6} .

This expression is comprised of two parts. The part before the vertical line

(x ∈ ℝ) tells us from which larger set, the numbers in our set are taken.

Here, x ∈ ℝ means that the numbers come from the set of real numbers,

i.e. we are allowed to use any number imaginable. The part after the line

is the condition these numbers have to satisfy; in this case the condition is

that the numbers must be between 1 and 6.
331 < x < 6 is a contraction of 1 < x and

x < 6, i.e. we are looking for numbers which

are simultaneously greater than 1 and less

than 6.
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Other examples of sets written using this notation are

B = {x ∈ ℤ | 1 < x < 6} , C =
{
x ∈ ℚ || x

2 < 9
}
.

Here, B is the set of integers between 1 and 6. This set may be written as a

list:

B = {2, 3, 4, 5} .
C is the set of fractions whose squares are less than 9. We cannot list this

set, because in�nitely many numbers satisfy this condition.

A.3 Intervals

The set A in the previous section is an example of what we call an interval.
An interval is a set which contains every real number between two given

values, e.g. “the set of every real number between 1 and 6” or “every real

number from −5 up to and including 80”. Sets containing every number

greater than or less than a given value are also called intervals.

We often need to talk about intervals, and therefore a notation has been

invented which makes it easier to write intervals. E.g. the set A above may

be written as

A = ]1; 6[ .
This notation means that the set A consists of every number between 1

and 6. The numbers 1 and 6 are called the left and right end values. Because

the brackets face away from the numbers, neither 1 nor 6 is included in

the interval (see �gure A.2).

0 1 2 3 4 5 6 7

Figure A.2: The interval ]1; 6[ . The empty

circles at 1 and 6 show that these numbers

are not included in the interval.If we want to write the interval from 1 to 6 including 1 and 6, we write

instead

D = [1; 6] .
We can also write D in set-builder notation as D = {x ∈ ℝ | 1 ≤ x ≤ 6}.

A few more examples are (see �gure A.3).

]−3; 2] = {x ∈ ℝ | −3 < x ≤ 2}

[−4; 12[ =
{
x ∈ ℝ || −4 ≤ x <

1
2

}
.

−4 −3 −2 −1 0 1 2

−4 −3 −2 −1 0 1 2

Figure A.3: The intervals ]−3; 2] and

[−4; 12[ .

If we want to write the interval containing every number larger than 3, we

use the symbol ∞ (in�nity) as the right end value:

E = ]3;∞[ .

Thus, the set E contains every number larger than 3. If we instead want to

talk about, e.g., every number less than or equal to 5, we write

F = ]−∞; 5] .

Note that when we use the symbol ∞, the bracket has to face away from

the symbol (this is because ∞ is not a number in itself, it merely shows

that the interval does not end in this direction).

If we let the interval be unlimited in both directions, we get the interval

consisting of every number, i.e.

ℝ = ]−∞;∞[ .
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A.4 Set operations

We may combine two given sets A and B in di�erent ways to form new

sets. E.g. we may look at the numbers which are an element of both A and

B, or the numbers which are elements of A, but not B.

The following de�nitions demonstrate some of the ways in which we may

form new sets (so-called set operations).

De�nition A.2

The intersection of two sets A and B contains every number, which is

an element of both A and B. We denote the intersection of A and B by

A ∩ B.

A
BA ∩ B

Figure A.4: The intersection A ∩ B.

Example A.3 If A = {1, 2, 3, 4, 5} and B = {2, 4, 6, 8}, then

A ∩ B = {2, 4} .

De�nition A.4

The union of two sets A and B contains every number which is an

element of either A or B (or both). The union of A and B is denoted by

A ∪ B.

A
B

A ∪ B

Figure A.5: The union A ∪ B.

Example A.5 If A = {1, 2, 3, 4, 5} and B = {2, 4, 6, 8}, then

A ∪ B = {1, 2, 3, 4, 5, 6, 8} .

De�nition A.6

The di�erence between two sets A and B contains every number which

is an element of A, but not of B. We denote the di�erence between A
and B by A ⧵ B.

A
B

A ⧵ B

Figure A.6: The di�erence A ⧵ B.

Example A.7 If A = {1, 2, 3, 4, 5} og B = {2, 4, 6, 8}, then

A ⧵ B = {1, 3, 5} .

and

B ⧵ A = {6, 8} .

Thus, when we look at di�erences between sets, the order matters.

Lastly, we de�ne the complement, which contains all of the numbers which

are not elements of a given set. If this concept is to make sense, we �rst

need to de�ne a universal set, which contains all of the numbers we will

allow any given set to contain.
44

The universal set might be the set of all

numbers, i.e. ℝ, but it could also be the

natural numbers ℕ, or some other given set

such as, e.g.,

{
−2, 0, 13 , 7

}
.

De�nition A.8

Let U be the universal set. The complement ∁A contains every element

of U which is not an element of A, i.e. ∁A = G ⧵ A.

A

∁A

Figure A.7: The complement ∁A.
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A.5 Relations between sets

It is sometimes important to be able to compare di�erent sets. E.g. we

would like to know when two sets are equal.

De�nition A.9

Two sets A and B are said to be equal when they contain the exact

same elements. In this case, we write A = B.

If all of the elements of A are elements of B, but all of the elements of B are

not necessarily elements of A, we call A a subset of B.

De�nition A.10

The set A is said to be a subset of the set B, if every element of A is

also an element of B. We write A ⊆ B.

B A

Figure A.8: A is a subset of B, A ⊆ B.

Example A.11 If two sets are given by

A = {−1, 1} and B = {−2, −1, 0, 1, 2, 3, 4} ,

then A is a subset of B, i.e. A ⊆ B.

Previously, we have demonstrated that every natural number is an integer,

and that every integer is a rational number, etc. We may express this using

the concept of subsets, and write

ℕ ⊆ ℤ ⊆ ℚ ⊆ ℝ .

Figure A.1 illustrates this.

If two sets have no common element, we call them disjoint.

De�nition A.12

Two setsA and B are called disjoint when no element ofA is an element

of B (and no element of B is an element of A), i.e. when A ∩ B = ∅.

Example A.13 The sets A = {1, 2, 3} and B = {−1, 0, 7} are disjoint sets.

A

B

Figure A.9: A and B are disjoint sets.
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A.6 Exercises

Exercise A.1
List the following sets (in braces):

The set of every integer from and including 5 up

to and including 10.

a)

The sets of every square between 1 and 100.b)

The set of every integer which satis�es x2 ≤ 9.c)

The set of every prime from and including 17 up

to and not including 43.

d)

Exercise A.2
List the following sets (in braces):

A = {x ∈ ℕ | x divides 12}a)

B = {x ∈ ℤ | x divides 12}b)

C = {x ∈ ℕ | 4 divides x}c)

D = {y | y is a prime less than 17}d)

E = {z | z is a two-digit square}e)

F =
{
x ∈ ℤ || x

2
is even

}
f)

Exercise A.3
Determine which of the following statements are true:

3 ∈ ℤa) 3 ∉ ℤb)

− 12 ∈ ℤc) 10.3 ∈ ℕd)

√
3 ∈ ℝe) −

√
4 ∈ ℤf)

√
9
16 ∉ ℚg)

121
11 ∈ ℕh)

0 ∈ ℕi)

√
32 + 42 ∈ ℚj)

Exercise A.4
Determine the elements of the following sets:

A = {x | 4x = 1}a)

B =
{
x ∈ ℕ || x(x − 1) + 2x = x

2 + 7
}

b)

C =
{
x ∈ ℤ || (x + 2)(x − 2) = 3x

2 − 22
}

c)

D =
{
x ||| 2x − 8 +

1
2 (x − 3) = −x

}
d)

Exercise A.5
Write the following sets as intervals:

]23; 44] ⧵ [31; 56]a) [32; 89[ ⧵ ]76; 97]b)

]−4; 7] ∪ [3; 12]c) [−8; −5] ∩ ]−6; 10[d)

[−1; 2] ⧵ ]0; ∞[e) ]3; 7[ ∩ [4; 13[f)

Exercise A.6
Let

A = {1, 2, 3, 4}
B = {−2, −1, 0, 1, 2, 3}
C = {−2, 0, 2, 4, 6, 8}

and determine:

A ∩ Ba) A ∪ Bb)

A ∩ Cc) B ∪ Cd)

A ⧵ Be) B ⧵ Af)

(A ∩ B) ∪ Cg) C ⧵ Ah)

(A ∪ B) ∩ Ci) (A ∩ B) ∪ (A ∩ C)j)
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