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Preface

This document is a translation of the Danish “Matematik B2”, which is a textbook on B level mathe-
matics of the Danish stx. Since English is not my first language, I apologise in advance for errors in
translation.

The primary aim is to provide a textbook without too much “clutter”. Examples are kept to a minimum,
and the text mainly covers the basic mathematics. It would therefore be a good idea to supplement the
text with examples and other materials that cover specific uses of the mathematical tools.

Mike Auerbach

ORIGINAL PREFACE (IN DANISH)

Disse matematiknoter dækker kernestoffet (og en smule mere) for det andet år i et studieretningsforløb
på B-niveau på stx. Noterne er skrevet med det formål at have en grundbog, som kun indeholder den
grundliggende matematiske teori. I forbindelse med samarbejde i studieretningen eller med andre
fag er det derfor nødvendigt at supplere med eksempler og andet materiale, der dækker konkrete
anvendelser.

Til gengæld dækker noterne den rent matematiske fremstilling af kernestoffet på stx, hvilket ifølge min
opfattelse gør dem velegnede til en første behandling af stoffet samt i forbindelse med eksamenslæs-
ningen.

Til slut en stor tak til de mange matematikkolleger, der er kommet med rettelser og gode ændrings-
forslag. De fejl og mangler, der stadig måtte findes, er naturligvis udelukkende mit ansvar.

Mike Auerbach
Tornbjerg Gymnasium
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1Differential Calculus

Calculus is a branch of mathematics concerned with functions, and how
they change. Differential calculus concerns itself with the growth of func-
tions for specific values of x. This growth can be described by the slope of
the graph at a specific point (x, f (x)). But since only straight lines have
slopes, we need to associate the graph with straight lines, for which we
can find the slope.

If the graph of a functions is nice and smooth, we can draw at each point
on the graph, a straight line which follows the graph at the point in ques-
tion. Such a line is called a tangent. An illustration can be seen in fig-
ure 1.1.

x

y

Figure 1.1: At each point on the graph, we
may draw a tangent. Here, some of the
tangents are illustrated by line segments.

Example 1.1
Here, we look at the function f (x) = 3x2 +7. The graph of this function
passes through the point P (5,82). At this point, the graph has a tangent,
see figure 1.2.

The slope of the tangent at this point is called f ′(5) (pronounced “f prime
of 5”). If we already know that f ′(5) = 30, then we can find an equation of
the tangent.

The tangent is a straight line, so its equation has the form y = ax+b. Since
we know that f ′(5) = 30, we also know that the equation is y = 30x +b.
The point of tangency is (5,82), therefore

82 = 30 ·5+b ⇔ b = 82−30 ·5 =−68 .

So, the tangent to the graph of f at the point P (5,82) has the equation

y = 30x −68 .

1 5

10

82
1

f ′(5) = 30P

x

y

Figure 1.2: P is the point of tangency, so P
lies on both the graph and the tangent.

In the example above, we saw that it is possible to find an equation of a
tangent, if we already know its slope. The question now is, how do we find
this slope?

It is of course possible to draw the tangent and then measure the slope—
but this method is not very precise.
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8 Differential Calculus

1.1 DERIVATIVES

If we can draw a tangent at each point of the graph of a function f , we
can define a new function based on f , whose values are the slopes of the
tangents at each point on the graph. We call this function the derivative
of f . The derivative of f is denoted by f ′.

It turns out that we can find a formula for f ′(x), if we know a formula
for f (x). The operation that turns f (x) into f ′(x) is called differentiation.
Not every function can be differentiated, but the ones that can are called
differentiable.11We are not going to give a strict definition

here, but simply note that for a function to
be differentiable, its graph must be contin-
uous (i.e. without holes) and smooth.

To determine the slopes of the tangents at each point on the graph, we
need to look at the tangents. Tangents are straight lines, and to determine
the slope we need two points on the line. Here we have a problem, since
we only know one point, P , the point of tangency.

We do not know the equation of the tangent, so it is not possible to cal-
culate a second point. The best we can do is find another point Q on the
graph close to the point of tangency, see figure 1.3.

x x +∆x

f (x)

f (x +∆x)
deviation

P

Q

x

y

Figure 1.3: The graph of f passes through
the points P and Q. Q does not lie on the
tangent, but it is close if ∆x is small.

If we calculate the slope of the tangent using the points P and Q, we will
not get the right slope, but we will get a number, which can be used as an
approximation. The smaller ∆x is, the closer Q is to P , and the better the
approximation. This is because the deviation marked in figure 1.3 gets
smaller, the smaller ∆x is.

A good approximation to the slope f ′(x) is therefore

f ′(x) ≈ ∆ f

∆x
,

where ∆ f = f (x +∆x)− f (x), and ∆x is small.

But we actually would like an exact value for the slope, and not just an
approximation. We can get this by letting ∆x have a value which is as
small as possible, i.e. ∆x = 0. But we cannot just let ∆x = 0, since this
would give us

∆ f

∆x
= f (x +∆x)− f (x)

∆x
= f (x +0)− f (x)

0
= 0

0
,

which makes no sense.

What we then do is to rewrite and simplify the fraction ∆ f
∆x to get to an

expression, where we can set ∆x = 0 without getting meaningless calcula-

tions. What we are trying to find out, is if there exists a number that ∆ f
∆x

would be equal to, if we were allowed to let ∆x = 0.

Actually, we are investigating the value of ∆ f
∆x , when ∆x approaches 0. We

define this number to be the slope, f ′(x). 22This description of f ′(x) is not exact. In re-
ality, we look at something called the limit

of
∆ f
∆x as ∆x approaches 0. If f is differen-

tiable, this is a well-defined quantity.

Example 1.2
The graph of f (x) = 3x2 + 7 passes through the point P (x, f (x)). The
tangent to the graph of f at this point has slope f ′(x). To calculate this
value, we will first find an approximate value of the slope using the points
P and Q, see figure 1.4.
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The point Q has coordinates Q(x +∆x, f (x +∆x)), so ∆ f is:

∆ f = f (x +∆x)− f (x)

= (3 · (x +∆x)2 +7)− (3x2 +7)

= 3x2 +6 · x ·∆x +3 · (∆x)2 +7−3x2 −7

= 6 · x ·∆x +3 · (∆x)2

Now, we divide this by ∆x to find an approximate value of f ′(x):

∆ f

∆x
= 6 · x ·∆x +3 · (∆x)2

∆x
= 6x +3 ·∆x .

So the slope of the tangent at P (x, f (x)) is approximately 6x +3 ·∆x.

The smaller ∆x is, the closer this expression will be to the true slope. And
the smaller ∆x is, the closer 6x +3 ·∆x will be to 6x.

We therefore conclude that the derivative of the function f (x) = 3x2 +7 is

f ′(x) = 6x .

x x +∆x

f (x)

f (x +∆x)

P

Q

x

y

Figure 1.4: P is the point of tangency, so P
lies on the graph as well as on the tangent.
Q lies only on the graph, but is close to the
tangent.

This method of finding the derivative gives us the following definition:

Definition 1.3

For a function f , we define the derivative f ′ to be the function such
that

∆ f

∆x
→ f ′(x) when ∆x → 0,

where ∆ f = f (x +∆x)− f (x).

The method we use to find derivatives, follows these three steps:

1. Calculate ∆ f , and simplify as much as possible.

2. Calculate ∆ f
∆x , and reduce as much as possible.

3. Determine what expression ∆ f
∆x approaches when ∆x → 0. This is

f ′(x).

For some reason, this is often called the three-step method.

Terms and Notation

Definition 1.3 tells us how to find the derivative f ′(x), which is the function
whose values are the tangent slopes at each point on the graph of f (x).

To find the derivative, we look at the difference quotient3 ∆ f
∆x . We investi- 3 ∆ f

∆x is called the “difference quotient”
since ∆ f and ∆x are differences, and the
result of a division is called a quotient.

gate what happens to this quantity as ∆x approaches 0. Because f ′(x) is

the “result” of ∆ f
∆x , we sometimes also use the notation d f

dx for the derivative
of x.4 4Note that

d f
dx means exactly the same as

f ′(x). I.e.
d f
dx is not a fraction or a quotient;

we cannot separate d f and dx.
So, the following are equivalent:

1. The derivative of f (x) = 3x2 +7 is f ′(x) = 6x.
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2. The derivative of f (x) = 3x2 +7 is d f
dx = 6x.

The derivative f ′ is a function. But if we let x have a certain value, e.g.
x = c, the value of f ′ at that x is the slope of the tangent to the graph of f
at the point (c, f (c)).

Example 1.4
The function f (x) = 3x2 +7 has the derivative

f ′(x) = 6x .

The graph of f passes through the point (1,10) (because f (1) = 10). At this
point the tangent has the slope

f ′(1) = 6 ·1 = 6 .

This can also be written as

d f

dx

∣∣∣∣
x=1

= 6 .

1.2 VARIOUS DERIVATIVES

In this section, we find the derivatives of some simple functions.

Theorem 1.5

If f (x) = c, where c is a constant, the derivative is f ′(x) = 0.

This follows from the fact that the graph of f (x) = c is a line parallel to the
x-axis, i.e. a line with slope 0. Since the value of f ′(x) is the slope of the
tangent at each point on the graph, and the graph has slope 0 everywhere,
we get f ′(x) = 0. A more formal proof, using definition 1.3 would be the
following:

Proof
If f (x) = c, then

∆ f = f (x +∆x)− f (x) = c − c = 0 .

Therefore
∆ f

∆x
= 0

∆x
= 0 .

Since ∆ f
∆x = 0, regardless of the value of ∆x, it follows that

∆ f

∆x
→ 0 , when ∆x → 0 .

I.e.

f ′(x) = 0 . �
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Theorem 1.6

If f (x) = x, then f ′(x) = 1.

The graph of f (x) = x is a straight line with slope 1. This actually proves
the theorem. A more formal proof using definition 1.3 is left as an exercise
to the reader.

Theorem 1.7

When f (x) = x2, the derivative is f ′(x) = 2x.

Proof
First, we calculate

∆ f = f (x +∆x)− f (x)

= (x +∆x)2 −x2

= x2 +2x ·∆x + (∆x)2 −x2

= 2x ·∆x + (∆x)2 .

Next, we calculate the quotient ∆ f
∆x

∆ f

∆x
= 2x ·∆x + (∆x)2

∆x
= 2x +∆x .

If ∆x → 0, this expression approaches 2x.

Therefore f ′(x) = 2x. �

Theorem 1.8

If f (x) = 1
x , the derivative is f ′(x) =− 1

x2 .

Proof
If f (x) = 1

x , we have

∆ f = f (x +∆x)− f (x)

= 1

x +∆x
− 1

x

= x

x · (x +∆x)
− x +∆x

x · (x +∆x)

= −∆x

x · (x +∆x)
.

I.e.
∆ f

∆x
=

−∆x
x·(x+∆x)

∆x
= −1

x · (x +∆x)
.

When ∆x → 0, this expression approaches −1
x·(x+0) = −1

x2 , and therefore

f ′(x) =− 1

x2 . �
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Theorem 1.9

If f (x) =p
x, the derivative is f ′(x) = 1

2
p

x
.

Proof
If f (x) =p

x, we have

∆ f = f (x +∆x)− f (x) =
p

x +∆x −p
x .

We cannot rewrite this expression, so we need to calculate the quotient
∆ f
∆x directly. It turns out that we can rewrite the quotient like this:55We multiply by

p
x +∆x +p

x in the nu-
merator and the denominator; then we can
use the rule

(a −b)(a +b) = a2 −b2 .

∆ f

∆x
=

p
x +∆x −p

x

∆x

=
(p

x +∆x −p
x
)(p

x +∆x +p
x
)

∆x · (px +∆x +p
x
)

=
(p

x +∆x
)2 − (p

x
)2

∆x · (px +∆x +p
x
)

= x +∆x −x

∆x · (px +∆x +p
x
)

= ∆x

∆x · (px +∆x +p
x
)

= 1p
x +∆x +p

x
.

This expression approaches 1p
x+0+px

= 1
2
p

x
when ∆x → 0, i.e.

f ′(x) = 1

2
p

x
. �

In table 1.1, some more derivatives are listed.

Table 1.1: Various functions and their
derivatives.

f (x) f ′(x)

k 0

x 1

x2 2x

x3 3x2

xn nxn−1

1
x − 1

x2

p
x 1

2
p

x

ex ex

ekx k ekx

ax ln(a) ·ax

ln(x) 1
x

Example 1.10
According to theorem 1.9, the derivative of f (x) =p

x is f ′(x) = 1
2
p

x
. Since

the values of f ′(x) are the slopes of the tangents to the graph of f , we find
that the tangent at the point P (4,2) has the slope

f ′(4) = 1

2
p

4
= 1

2 ·2
= 1

4
.

This is illustrated in figure 1.5.

So, the tangent is a straight line, and its equation is y = 1
4 x + b. If we

want to find the value of b, we insert the point of tangency P (4,2) into the
equation:

2 = 1
4 ·4+b ⇔ b = 1 .

At the point P (4,2), the graph of f (x) =p
x has a tangent, whose equation

is
y = 1

4 x +1 .

This can also be seen in figure 1.5.
1 4

1

2
P (4,2)

f (x) =p
x

y = 1
4 x +1

x

y

Figure 1.5: The graph of f (x) = p
x has a

tangent with the equation y = 1
4 x +1 at the

point P (4,2).
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1.3 SUM AND DIFFERENCE

It turns out that in order to find the derivative f ′ of a given function f , it is
not necessary to use the method from the previous section every time. We
only need to know the derivative of a few simple functions, like the ones
in the table above. This is because there are some rules for calculating
derivatives of functions, which are “made up of” simpler functions.

Theorem 1.11

If the function p is differentiable, and f (x) = c · p(x), where c is a
constant, then f ′(x) = c ·p ′(x).

Proof
If f (x) = c ·p(x), then

∆ f = c ·p(x +∆x)− c ·p(x) = c · (p(x +∆x)−p(x)
)= c ·∆p .

I.e.
∆ f

∆x
= c ·∆p

∆x
= c · ∆p

∆x
.

If we let ∆x → 0, then ∆p
∆x → p ′(x), and then c · ∆p

∆x → c ·p ′(x). Therefore

f ′(x) = c ·p ′(x) . �

In the following example, we demonstrate how to use this result.

Example 1.12
According to theorem 1.7, the derivative of p(x) = x2 is p ′(x) = 2x. But
what is the derivative of f (x) = 7x2?

We can now use theorem 1.11. If f (x) = 7x2, then

f (x) = c ·p(x) , where c = 7 and p(x) = x2 .

Since we already know the derivative of p(x) = x2, theorem 1.11 gives us

f ′(x) = c ·p ′(x) = 7 ·2x = 14x .

So, we can find the derivative of f (x) = 7x2, because we already know the
derivative of x2.

Example 1.13
If we want to find the derivative of f (x) = 4x3, we write f (x) as f (x) =
4 ·p(x), where p(x) = x3.

Looking up p(x) = x3 gives us p ′(x) = 3x2. Then, according to theo-
rem 1.11,

f ′(x) = 4 ·p ′(x) = 4 ·3x2 = 12x2 .

Theorem 1.14

Let p and q be differentiable functions. If f (x) = p(x)+q(x), then

f ′(x) = p ′(x)+q ′(x) .
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Proof
We use definition 1.3 and calculate

∆ f = f (x +∆x)− f (x) = (
p(x +∆x)+q(x +∆x)

)− (
p(x)+q(x)

)
= p(x +∆x)−p(x)+q(x +∆x)−q(x)

=∆p +∆q .

Next, we get

∆ f

∆x
= ∆p +∆q

∆x
= ∆p

∆x
+ ∆q

∆x
.

If we let ∆x → 0, then ∆p
∆x → p ′(x) and ∆q

∆x → q ′(x), which means that

f ′(x) = p ′(x)+q ′(x) . �

Theorem 1.15

Let p and q be differentiable functions. If f (x) = p(x)−q(x), then

f ′(x) = p ′(x)−q ′(x) .

This theorem is very similar to theorem 1.14, and it can be proven in the
same manner.

Example 1.16
The theorems 1.11, 1.14 and 1.15 can be combined if we need to differen-
tiate more complicated functions.

The function

f (x) = 4x2 +5ln(x)−3x

combines the simpler functions x2, ln(x) og x, whose derivatives are all
listed in table 1.1.

Using theorems 1.14 and 1.15 we get

f ′(x) = (
4x2)′+ (5ln(x))′− (3x)′ .

Next, we use theorem 1.11 to get

f ′(x) = 4 · (x2)′+5 · (ln(x))′−3 · (x)′ .

We now find the derivatives of x2, ln(x) and x in the table. Then we have

f ′(x) = 4 ·2x +5 · 1

x
−3 ·1 ,

which can be simplified to

f ′(x) = 8x + 5

x
−3 .
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1.4 PRODUCTS, COMPOSITIONS AND QUOTIENTS

If we look at the theorems, we have proven so far, we might get the idea
that we can differentiate any function by differentiating each part of the
function independently. However, this is not the case, which the next
theorem shows.

Theorem 1.17: The product rule

Let p and q be differentiable functions. If f (x) = p(x) ·q(x), then

f ′(x) = p ′(x) ·q(x)+p(x) ·q ′(x) .

Proof
If f (x) = p(x) ·q(x), then

∆ f = f (x +∆x)− f (x) = p(x +∆x) ·q(x +∆x)−p(x) ·q(x) .

In order to rewrite this expression, so it contains ∆p as well as ∆q , we use
a trick: We subtract the term p(x) ·q(x +∆x) and then add it again. This
does not change anything:

∆ f = p(x +∆x) ·q(x +∆x)−p(x) ·q(x)

= p(x +∆x) ·q(x +∆x)−p(x) ·q(x +∆x)+p(x) ·q(x +∆x)︸ ︷︷ ︸
the sum of these two terms is 0

−p(x) ·q(x) .

Now we can factor out like terms to get

∆ f = (
p(x +∆x)−p(x)

) ·q(x +∆x)+p(x) · (q(x +∆x)−q(x)
)

=∆p ·q(x +∆x)+p(x) ·∆q .

Then

∆ f

∆x
= ∆p ·q(x +∆x)+p(x) ·∆q

∆x
= ∆p

∆x
·q(x +∆x)+p(x) · ∆q

∆x
.

If we let ∆x → 0, we have

∆p

∆x
→ p ′(x)

q(x +∆x) → q(x)

p(x) → p(x)

∆q

∆x
→ q ′(x) .

Collectively, this gives us

f ′(x) = p ′(x) ·q(x)+p(x) ·q ′(x) . �

Example 1.18
We want to find the derivative of f (x) = p

x · ln(x), so we write f (x) as
f (x) = p(x) ·q(x), where

p(x) =p
x, q(x) = ln(x).
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In our table, we find that

p ′(x) = 1

2
p

x
, q ′(x) = 1

x
.

Theorem 1.17 then gives us

f ′(x) = p ′(x) ·q(x)+p(x) ·q ′(x)

= 1

2
p

x
· ln(x)+p

x · 1

x
.

This reduces to

f ′(x) = ln(x)

2
p

x
+ 1p

x
⇒ f ′(x) = ln(x)+2

2
p

x
.

The next theorem is about composite functions. These are functions which
can best be described as “functions of functions”. Some examples are

f (x) = (ln(x))2 , g (x) =
√

x3 +4 ,

h(x) = e6x+x2
, k(x) = ln(x2 +ex ) .

To differentiate such a function, we need to separate it into an outer
function and an inner function.6 How to find the derivative is given by the6The function f is composed of an inner

function, which is q(x) = ln(x), and an
outer function, which is p(q) = q2, because
ln(x) is squared.

following theorem:

Theorem 1.19: The chain rule

Let p and q be differentiable functions. If f (x) = p(q(x)), then its
derivative is

f ′(x) = p ′(q(x)) ·q ′(x) .

Proof
If f (x) = p(q(x)), then

∆ f

∆x
= f (x +∆x)− f (x)

∆x
= p(q(x +∆x))−p(q(x))

∆x
. (1.1)

∆q is by definition ∆q = q(x +∆x)−q(x), which gives us

q(x +∆x) = q(x)+∆q .

The quotient in the expression (1.1) can therefore be rewritten as

∆ f

∆x
= p(q(x)+∆q)−p(q(x))

∆x
.

If we do not write explicitly that q depends on x, this can also be written
as

∆ f

∆x
= p(q +∆q)−p(q)

∆x
.

As long as∆q is not 0, we can multiply this fraction by∆q in the numerator
and the denominator to get

∆ f

∆x
= p(q +∆q)−p(q)

∆q
· ∆q

∆x
. (1.2)
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The two factors on the right hand side of (1.2) can now be examined in
turn:

The fraction p(q+∆q)−p(q)
∆q can be written as ∆p

∆q , where it is implicit that
p is a function of q . Since ∆q = q(x +∆x)− q(x), ∆q → 0 when ∆x → 0,
which means that

∆p

∆q
→ p ′(q) , when ∆x → 0 .

For ∆q
∆x we have

∆q

∆x
→ q ′(x) , when ∆x → 0 .

Collectively, we get from the equation (1.2) that

∆ f

∆x
→ p ′(q) ·q ′(x) , when ∆x → 0 .

Now, if we remember that q is in fact a function of x, we have

f ′(x) = p ′(q(x)) ·q ′(x) . �

Example 1.20
A function f is given by the formula f (x) =

p
x2 +3. So, f may be written

as f (x) = p(q(x)), where

p(q) =p
q and q(x) = x2 +3 .

The derivatives of both of these functions can be found in a table:

p ′(q) = 1

2
p

q
and q ′(x) = 2x .

Theorem 1.19 now gives us

f ′(x) = p ′(q(x)) ·q ′(x)

= 1

2
p

q
·2x

(∗)= 1

2
p

x2 +3
·2x

At (∗), we replace q by x2 +3, since q(x) = x2 +3.

Simplifying this further gives

f ′(x) = 1

2
p

x2 +3
·2x = xp

x2 +3
.

Example 1.21
A function f has the formula f (x) = ex2

. To differentiate f , we write
f (x) = p(q(x)), where

p(q) = eq , q(x) = x2 .

From our table of derivatives, we get

p ′(q) = eq , q ′(x) = 2x .

Then theorem 1.19 gives us

f ′(x) = p ′(q(x)) ·q ′(x) = eq ·2x = ex2 ·2x .
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The theorems 1.17 and 1.19 can also be used to prove a theorem about
the derivative of a quotient of functions. We have the following theorem:

Theorem 1.22: The quotient rule

Let p and q be differentiable, and q(x) 6= 0 for all x. Then if f (x) = p(x)
q(x) ,

its derivative is

f ′(x) = p ′(x) ·q(x)−p(x) ·q ′(x)

(q(x))2 .

Proof
f (x) = p(x)

q(x) can be rewritten, so we have

f (x) = p(x) · 1

q(x)
.

This is a product of two functions. According to theorem 1.17, we must
then have

f ′(x) = p ′(x) · 1

q(x)
+p(x) ·

(
1

q(x)

)′
= p ′(x)

q(x)
+p(x) ·

(
1

q(x)

)′
. (1.3)

To proceed further, we need to investigate
(

1
q(x)

)′
. This is the derivative of

a composite function. Using theorem 1.19 gives us77The expression 1
q(x) is composed of s(q) =

1
q and q(x). Next, we use that

s′(q) =− 1

q2
.

(
1

q(x)

)′
=− 1

q(x)2 ·q ′(x) .

If we insert this result into (1.3), we get

f ′(x) = p ′(x)

q(x)
+p(x) ·

(
− 1

q(x)2 ·q ′(x)

)
= p ′(x)

q(x)
− p(x) ·q ′(x)

q(x)2

= p ′(x) ·q(x)

q(x)2 − p(x) ·q ′(x)

q(x)2

= p ′(x) ·q(x)−p(x) ·q ′(x)

q(x)2 . �

Example 1.23
Let f (x) = x2

ex . To find the derivative f ′(x), we write f (x) = p(x)
q(x) , where

p(x) = x2 , q(x) = ex .

From our table, we have

p ′(x) = 2x , q ′(x) = ex .

Using theorem 1.22, we then get

f ′(x) = p ′(x) ·q(x)−p(x) ·q ′(x)

(q(x))2



1.4 Products, Compositions and Quotients 19

= 2x ·ex −x2 ·ex

(ex )2 .

Simplifying this result gives us

f ′(x) = 2x −x2

ex .

There are functions, where using one of the rules from the theorems 1.17,
1.19 or 1.22 is not enough to find the derivative. Sometimes we need to
combine several rules.

Here, we have an extreme example:

Example 1.24
A function f has the formula

f (x) = 1√
x2 · ln(x)

, x > 1 .

How do we differentiate this?

First we write f (x) = p(q(x)), where

p(q) = 1

q
, q(x) =

√
x2 · ln(x) .

Here, we can easily differentiate p(q), but what about q(x)? We need to
write this as q(x) = s(t (x)), where

s(t ) =p
t , t (x) = x2 · ln(x) .

Now, we need to differentiate t , so we write t as t (x) = n(x) ·m(x),

n(x) = x2 , m(x) = ln(x) .

Here

n′(x) = 2x , m′(x) = 1

x
.

According to theorem 1.17, we now have

t ′(x) = n′(x) ·m(x)+n(x) ·m′(x) = 2x · ln(x)+x2 · 1

x
.

This can be reduced to t ′(x) = 2x · ln(x)+x.

We now have everything we need, and we can begin to work our way
backwards through the many parts of the function:

q ′(x) = s′(t (x)) · t ′(x) = 1

2
p

t
·(2x · ln(x)+x) = 1

2
√

x2 · ln(x)
·(2x · ln(x)+x) .

We reduce this to

q ′(x) = 2x · ln(x)+x

2
√

x2 · ln(x)
.

At last, we then have

f ′(x) = p ′(q(x)) ·q ′(x) =− 1

q2 · 2x · ln(x)+x

2
√

x2 · ln(x)
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=− 1(√
x2 · ln(x)

)2 · 2x · ln(x)+x

2
√

x2 · ln(x)
.

This may also be reduced, and we get

f ′(x) =− 2ln(x)+1

2x2 · ln(x) ·pln(x)
.

Using the theorems 1.11–1.22 and a table of derivatives allows us to differ-
entiate any function. We therefore conclude this section with an overview
of these theorems:

Theorem 1.25

If p and q are differentiable functions, and c is a constant, the follow-
ing rules hold:

f (x) = c ·p(x) ⇒ f ′(x) = c ·p ′(x) .

f (x) = p(x)+q(x) ⇒ f ′(x) = p ′(x)+q ′(x) .

f (x) = p(x)−q(x) ⇒ f ′(x) = p ′(x)−q ′(x) .

f (x) = p(x) ·q(x) ⇒ f ′(x) = p ′(x) ·q(x)+p(x) ·q ′(x) .

f (x) = p(q(x)) ⇒ f ′(x) = p ′(q(x)) ·q ′(x) .

f (x) = p(x)

q(x)
⇒ f ′(x) = p ′(x) ·q(x)−p(x) ·q ′(x)

q(x)2 .

1.5 TANGENT EQUATIONS

The derivative can be used to find the slope of a tangent at any point on
the graph of a function. If we know the slope and a point, it is possible to
determine an equation for the tangent. Here, we give some examples.

Example 1.26
The function f (x) = x2 +4x +6 has a tangent at the point P (−1, f (−1)).
What is its equation?

The tangent is a straight line, so its equation has the form y = ax + b.
Thus, we need to determine the two numbers a and b to write down the
equation. a is the slope of the tangent, and this slope can be calculated
using f ′(x). Therefore, we start out by finding the derivative of f :

f ′(x) = 2x +4 ·1−0 = 2x +4 .

The x-coordinate of the point of tangency is x0 =−1, so the slope is

f ′(−1) = 2 · (−1)+4 = 2 ,

and the equation of the tangent is y = 2x +b.

−4 −2 2 4

−2

2

4

6

8

(−1,3)

x

y

Figure 1.6: The graph of f (x) = x2 +4x +6
has a tangent with the equation y = 2x +5
at the point P (−1,3).

To determine the last number b, we need to know the point of tangency.
The x-coordinate is x0 =−1, the y-coordinate is

y0 = f (−1) = (−1)2 +4 · (−1)+6 = 1−4+6 = 3 .
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So, the point of tangency is (−1,3). We insert this point into the equation
of the tangent, i.e.

3 = 2 · (−1)+b ⇔ b = 5 .

Therefore our tangent has the equation

y = 2x +5 .

The graph and its tangent can be seen in figure 1.6.

Example 1.27
The function g (x) = 3x + ln(x) has a tangent at P (1, f (1)).

To determine the equation of this tangent, we first find the derivative of g ,

g ′(x) = 3+ 1

x
.

The slope of the tangent is then

a = f ′(1) = 3+ 1

1
= 4 ,

and its equation is y = 4x +b.

To calculate b, we find the y-coordinate of the point of tangency

y0 = f (1) = 3 ·1+ ln(1) = 3 ,

and we insert this number along with x0 = 1 into the equation:

3 = 4 ·1+b ⇔ b =−1.

So the equation of the tangent is

y = 4x −1 .

As we see from these two examples, we are using the same method each
time we determine the equation of the tangent. Therefore, we might turn
this method into a formula. This is done in the following theorem.

Theorem 1.28

Let f be a differentiable function. Then the tangent to the graph of f
at P (x0; f (x0)) has the equation

y = f ′(x0) · (x −x0)+ f (x0) .

Proof
The tangent is a straight line, so its equation has the form y = ax+b. Since
f ′(x) is the slope of the tangent, and the point of tangency is P (x0, f (x0)),
the slope must be

a = f ′(x0) .

Therefore the equation of the tangent is

y = f ′(x0) · x +b . (1.4)
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To determine the y-intercept, b, we insert the point of tangency P (x0, f (x0))
into the tangent equation, which we then solve for b:

f (x0) = f ′(x0) · x0 +b ⇔ b =− f ′(x0) · x0 + f (x0) .

We insert this expression for b into the tangent equation (1.4), and get

y = f ′(x0) · x − f ′(x0) · x0 + f (x0) ,

and factoring this equation then gives us

y = f ′(x0) · (x −x0)+ f (x0) . �

Here, we show a few examples on how to use the formula:

Example 1.29
The function f (x) = 3x2 +10 has a tangent at P (5, f (5)). To find the equa-
tion of this tangent we use the formula

y = f ′(x0) · (x −x0)+ f (x0)

with x0 = 5, i.e.
y = f ′(5) · (x −5)+ f (5) .

Before we can calculate the numbers, we need to find f ′(x):

f ′(x) = 3 ·2x +0 = 6x .

Then we calculate

f ′(5) = 6 ·5 = 30

f (5) = 3 ·52 +10 = 85 .

Inserting this into our formula, gives us

y = 30 · (x −5)+85 ,

which can be simplified to

y = 30x −65 .

Example 1.30
The function g (x) = (7x +1) ·ex has a tangent at P (0, g (0)).

The equation of this tangent is

y = g ′(0) · (x −0)+ g (0) = g ′(0) · x + g (0) .

Now, we find88The function is differentiated using the
product rule, theorem 1.17.

g ′(x) = 7 ·ex + (7x +1) ·ex = (7x +8) ·ex .

I.e.

g ′(0) = (7 ·0+8) ·e0 = 8 ·1 = 8

g (0) = (7 ·0+1) ·e0 = 1 ·1 = 1 .

Inserting these results into our equation above gives us

y = 8x +1 .
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Determining Points of Tangency

If we know a formula for a function, and a point on its graph, we can
find an equation for the tangent at this point. But it is also possible to do
the calculations the other way around: If we know the tangent, we can
determine the point of tangency.

In this section, we show some examples.

Example 1.31
A function has the formula f (x) =−x2 +3x +1.

The graph of this function has a tangent with the equation y = x+2. Where
is the point of tangency?

The derivative of f is
f ′(x) =−2x +3 ,

and this gives us the slope of the tangent at each point on the graph.

1

1

(1,3)

x

y

Figure 1.7: The line y = x +2 is a tangent to
f (x) =−x2 +3x +1 at (1,3).

We know the equation of the tangent, so we know that it has slope 1, i.e.
f ′(x) = 1 at the point of tangency. This gives us the equation

−2x +3 = 1 ⇔ x = 1 .

so, the x-coordinate of the point of tangency is 1. Now we just need to
find the y-coordinate, which is

f (1) =−12 +3 ·1+1 = 3 .

Therefore the point of tangency is (1,3), see figure 1.7.

Example 1.32
The function f is given by the formula

f (x) = x − 4

x
+3 , x > 0 .

The graph of f has a tangent with slope 2. Where is its point of tangency,
and what is its equation?

Since f ′(x) is the slope of the tangent, we need to know when f ′(x) = 2.
First, we find f ′(x),

f ′(x) = 1+ 4

x2 , x > 0 .

Then we solve the equation f ′(x) = 2,

1+ 4

x2 = 2 ⇔ 4

x2 = 1 ⇔ x =−2 ∨ x = 2 .

The equation has two solutions, but since f (x) is only defined for x > 0, we
discard the negative solution. The x-coordinate of the point of tangency
is then x = 2.

The y-coordinate is

f (2) = 2− 4

2
+3 = 3 ,

and the point of tangency is (2,3), see figure 1.8.

1

2 (2,3)
x

y

Figure 1.8: The graph of f (x) = x− 4
x +3 has

a tangent with slope 2 at (2,3).
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According to theorem 1.28, the equation of the tangent is

y = f ′(2) · (x −2)+ f (2) ,

but since we already know the slope f ′(2) = 2, and we know that f (2) = 3,
this equation becomes

y = 2 · (x −2)+3 ,

which may be simplified to

y = 2x −1 .

Example 1.33
The graph of f (x) = x3−3x2−21x+5 has two tangents with slope 3. What
are their points of tangency?

The slope is 3, i.e. f ′(x) = 3. To solve this we need to find f ′(x),

f ′(x) = 3x2 −3 ·2x −21 ·1 = 3x2 −6x −21 .

The equation f ′(x) = 3 is therefore the quadratic equation

3x2 −6x −21 = 3 ⇔ 3x2 −6x −24 = 0 .

If we solve this, we find the solutions

x =−2 ∨ x = 4 .

So, the two points of tangency are (−2, f (−2)) and (4, f (4)). Next, we
determine the two y-coordinates

f (−2) = (−2)3 −3 · (−2)2 −21 · (−2)+5 = 27

f (4) = 43 −3 ·42 −21 ·4+5 =−63 .

Therefore, the two points of tangency are (−2,27) and (4,−63). At these
two points, the graph of f has a tangent with slope 3.

If we want to know the equations of these two tangents, we can find them
in the same way as in example 1.32.

Example 1.34
In example 1.33, we saw how the graph of f (x) = x3−3x2−21x+5 had two
tangents with slope 3. Is there a slope a, such that the graph has exactly
one tangent with this slope?

This question is a bit more complicated. We find the point of tangency by
solving the equation f ′(x) = a for a given slope a, so the question may be
rephrased as: Is there a number a, so the equation

f ′(x) = a (1.5)

has exactly one solution?

From example 1.33, we have

f ′(x) = 3x2 −6x −21 .
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so the equation (1.5) becomes

3x2 −6x −21 = a ⇔ 3x2 −6x −21−a = 0 .

This is a quadratic equation. If this equation is to have exactly one solution,
its discriminant must be 0. The discriminant of this equation is9 9Remember that the discriminant is d =

B2 −4AC , where A, B and C are the coef-
ficients of the equation. (We write them
as A, B and C , because we cannot denote
the coefficient of the quadratic term by a,
since we used this letter to denote the slope
of the tangent.)

d = (−6)2 −4 ·3 · (−21−a) = 36−12 · (−21−a) = 288+12a .

If this is 0, then

288+12a = 0 ⇔ 12a =−288 ⇔ a =−24 .

Therefore, there is exactly one tangent with slope a =−24.

Actually, by taking a closer look at the discriminant, we find that if a >−24
there are two tangents with slope a; but there are no tangents with slope
a if a <−24.
Example 1.35
In this example, we look at the graph of f (x) = x2 +3x +6. How many of
its tangents pass through the point P (2,7)?

This is not a simple question, since the point P is not on the graph. In
figure 1.9, we see an illustration of this. Here, we also see that there are
two tangents to the graph that pass through P .

According to theorem 1.28 the equation of a tangent is

y = f ′(x0) · (x −x0)+ f (x0) .

The problem now consists of finding the points of tangency for those tan-
gents that pass through P (2,7). The point of tangency can be calculated
from its x-coordinate x0, but we do not know this coordinate.

1

10

P (2,7)
x

y

Figure 1.9: The graph of f (x) = x2 +3x +6
has two tangents passing through P (2,7).

What we do know is that the tangents pass through P (2,7), therefore these
coordinates fit into the equation of the tangent. This gives us

7 = f ′(x0) · (2−x0)+ f (x0) . (1.6)

We want to solve this equation to find x0. To do this, we must know f ′(x),
so we differentiate f :

f ′(x) = 2x +3 .

We insert this along with the formula for the function f itself into equation
(1.6), and get

7 = (2x0 +3) · (2−x0)+ (x2
0 +3x0 +6) ,

which reduces to

7 =−2x0 +x0 +6+x2
0 +3x0 +6 .

This we can simplify and get the quadratic equation

x2
0 −4x0 −5 = 0 ,

which has the solutions
x =−1 ∨ x = 5 .

Since there are two points of tangency, there are two tangents.

The y-coordinates of the points of tangency as well as the equations of
the tangents can now be found by proceeding in the same way as in
example 1.29.
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1.6 MONOTONY INTERVALS AND EXTREMA

If for a certain function, the function value always increases whenever the
independent variable increases, we call the function increasing.

If, however, the function value always decreases when the independent
variable increases, the function is called decreasing.

More formally, we have the following definition:

Definition 1.36

Let a function f be defined on an interval.

1. If for any pair of arbitrary numbers x1, x2 in the interval

x1 ≤ x2 ⇒ f (x1) ≤ f (x2) ,

the function is said to be increasing in the interval.

2. If for any pair of arbitrary numbers x1, x2 in the interval

x1 ≤ x2 ⇒ f (x1) ≥ f (x2) ,

the function is said to be decreasing in the interval.

Notice that the definition only mentions the behaviour of functions in
an interval. If we only look at a single point, it makes no sense to talk
about whether the function is increasing or decreasing. The properties
increasing and decreasing only applies to intervals, not points.

Example 1.37
The graph of the function f (x) = 2x+1 is a straight line with positive slope.
This function is therefore increasing.

Conversely, a straight line with a negative slope is the graph of a decreasing
function (e.g. f (x) =−4x +3).

A function, which is either increasing or decreasing everywhere, is called
a monotonous functions. Not every function is monotonous. A lot of
functions are decreasing in some intervals and increasing in others.

When we describe where a function is increasing and decreasing, we
find what we call the monotony intervals, i.e. the intervals in which the
function is entirely increasing or decreasing.

Example 1.38
In figure 1.10, we see the graph of the function

f (x) = x2 −4x +1.
1

1
x = 2

f

x

y

Figure 1.10: The graph of f (x) = x2 −4x +1.

We have also drawn the vertical line x = 2. We see that on the left hand
side of this line, the functions is decreasing, while it is increasing on the
right hand side.

So, we say that f (x) is decreasing when x ≤ 2, and increasing when x ≥ 2.
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These are the monotony intervals.

In example 1.38, we found the monotony intervals by looking at the graph.
We can always graph a function to find the monotony intervals, but this
method lacks precision.

It would therefore be nice if we had a way of calculating where the graph
changes from increasing to decreasing or vice versa; we would like to be
able to do this by looking only at a formula of the function.

From example 1.37, we know that if the graph is a straight line, its intervals
of monotony are determined by the slope. If the slope is positive, the
function is increasing, if it is negative, the function is decreasing for every
value of x.

But tangents to a graph of any given function are straight lines, and their
slopes are given by f ′(x), therefore the following theorem makes sense
intuitively,

Theorem 1.39

Let f be a differentiable function.

1. If f is increasing in the interval [a;b], then f ′(x) ≥ 0 for all
x ∈ ]a;b[ .

2. If f is decreasing in the interval [a;b], then f ′(x) ≤ 0 for all
x ∈ ]a;b[ .

3. If f is constant in the interval [a;b], then f ′(x) = 0 for all x ∈
]a;b[ .

Notice that when f (x) is increasing, the tangent slope is not necessarily
positive in the entire interval. It may be 0 in some subset of the interval.
This actually follows from definition 1.36, where f (x1) does not need
to be greater than f (x2) when x1 ≤ x2, but only greater than or equal
to. Increasing and decreasing functions may therefore be constant in an
interval.10 10Actually, it follows from definition 1.36

that a constant function is both increasing
and decreasing. This may seem contradic-
tory, but it is the case nonetheless.

Theorem 1.39 can be used to find some of the properties of f ′(x), if we
already know the monotony intervals. Normally, we would instead try
to determine the monotony intervals using f ′(x). To do this, we use the
following theorem:

Theorem 1.40

Let f be a differentiable function.

1. If f ′(x) > 0 for all x in the interval ]a;b[ , then f is increasing in
[a;b].

2. If f ′(x) < 0 for all x in the interval ]a;b[ , then f is decreasing
in [a;b].

3. If f ′(x) = 0 for all x in the interval ]a;b[ , then f is constant in
[a;b].
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If we want to determine the monotony intervals for a function f , we
need to investigate f ′ to find out, when f ′(x) changes sign from positive
to negative or vice versa. If the value of f ′(x) changes from positive to
negative, it has to pass through 0. Therefore we need to know, when
f ′(x) = 0.

This is illustrated in the following example.

Example 1.41
Here we look at the same function as in example 1.38,

f (x) = x2 −4x +1 .

To find out when the graph changes from increasing to decreasing, we
need to find out, where f ′(x) = 0. Therefore, we first determine f ′(x),

f ′(x) = 2x −4 .

1 2

1

f ′(x) = 0

f ′(x) > 0f ′(x) < 0

x

y

Figure 1.11: The graph of f (x) = x2 −4x +1
is decreasing before x = 2 and increasing
after x = 2. At x = 2, we have a horizontal
tangent.

The equation f ′(x) = 0 is then

2x −4 = 0 ⇔ x = 2 .

At x = 2, the graph has a tangent with slope 0, i.e. a horizontal tangent.
We can also see this in figure 1.11.

From the graph, we see that the function is decreasing before x = 2 and
increasing after. If we do not have the graph, we need to find the sign of
f ′(x) by calculation.

If we want to find out, whether f ′(x) is positive or negative when x < 2,
we choose some number less than 2, which we insert into the formula for
f ′. A number less than 2 could e.g. be 0, which would give us

f ′(0) = 2 ·0−4 =−4 .

Since −4 < 0 we conclude that f ′(x) is negative for all x < 2, i.e. f is
decreasing for x ≤ 2.1111We know from our earlier calculations

that f ′(x) will only be 0 for x = 2. Therefore
the value of f ′(x) will have the same sign
for alle numbers x < 2, and we need only
check the sign if f ′(x) for one number less
than 2—here we used x = 0.

In the same way, we may choose a number greater than 2, e.g. 3, and
calculate

f ′(3) = 2 ·3−4 = 2 > 0 ,

i.e. f ′(x) is positive for all x > 2, and f (x) is increasing for x ≥ 2.

So, we can describe the monotony intervals of f by saying that f (x) is
decreasing for all x ≤ 2 and increasing for all x ≥ 2.1212The numbers 0 and 3, which we used to

calculate the sign of f ′, have nothing to
do with the monotony intervals. We just
needed two numbers, one less than 2 and
one greater than 2.

Sign Table

The monotony intervals of the function in example 1.41 can also be de-
scribed in a sign table. Such a table could look like this:

x :

f ′(x) :
f (x) :

2

0

min.

−
↘

+
↗
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From the table, we see that before x = 2, f ′(x) < 0, and after x = 2, f ′(x) > 0.
This is illustrated by the − and the + in the table. In the last line, we see
that this shows us, where f (x) is decreasing, and where it is increasing
(illustrated by ↘ and ↗).

Using this table, we can easily describe the monotony intervals.13 We can 13The sign table is not equal to the
monotony intervals, but it describes the
monotony intervals.

also see something else. At x = 2, the function f has a minimum,, i.e. a
point on the graph, where the function values assumes its lowest possible
value.

We see that it is a minimum, because the function decreases and then in-
creases, when we pass x = 2. In this case, it is actually a global minimum,,
because it is the lowest point on the entire graph. If a minimum is not
global, we call it a local minimum. In the same way, we can talk about
global and local maxima. Figure 1.12 illustrates this. local

minimum

local
maximum

global
minimum

x

y

Figure 1.12: Functions may have local and
global extrema.

A collective term for these points is extrema. An extremum is a point on
the graph, where it has a minimum or a maximum (local or global).

Example 1.42
In this example, we will find the monotony intervals and the extrema of
f (x) = x3 −6x2 +9x +1.

The derivative is

f ′(x) = 3x2 −12x +9 ,

i.e. the equation f ′(x) = 0 is the quadratic

3x2 −12x +9 = 0 ,

which has solutions x = 1 and x = 3.

The two solutions divide the number line into three intervals: The num-
bers less than 1, the numbers between 1 and 3, and the numbers greater
than 3. Now, we choose an arbitrary number from each of these intervals
to determine the sign of f ′(x) in the intervals:

x < 1 : f ′(0) = 3 ·02 −12 ·0+9 = 9 > 0

1 < x < 3 : f ′(2) = 3 ·22 −12 ·2+9 =−3 < 0

x > 3 : f ′(5) = 3 ·52 −12 ·5+9 = 24 > 0

Now, we may draw a sign table:

x :

f ′(x) :
f (x) :

1

0

maks.

3

0

min.

+
↗

−
↘

+
↗

From this table, we can find the monotony intervals:

f (x) is increasing for all x ≤ 1 and for all x ≥ 3, and decreasing
for all 1 ≤ x ≤ 3.
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Since we know that the monotony intervals separate at x = 1 and x = 3, we
can also find the intervals on the graph (see figure 1.13) instead of writing
down the table.

1

1

x

y

Figure 1.13: The graph of f (x) = x3 −6x2 +
9x + 1 has a local maximum and a local
minimum.

From the sign table, we see that there are two local extrema. The first
extremum is a local maximum at x = 1, the second is a local minimum at
x = 3.

We find the y-coordinates of these extrema:

f (1) = 13 −6 ·12 +9 ·1+1 = 5

f (3) = 33 −6 ·32 +9 ·3+1 = 1 .

So, f has a local maximum at (1,5) and a local minimum at (3,1).

Example 1.43
In this example, we will find the extrema of

f (x) = 6 ·px −2x , x > 0 .

The graph of this function is seen in figure 1.14. Here, we see that it looks
like f has a global maximum near x = 2.

1

1

x

y

Figure 1.14: The graph f (x) = 6 ·px −2x ap-
pears to have a global maximum.

To determine, whether the function has a maximum, we first find

f ′(x) = 6 · 1

2 ·px
−2 ·1 = 3p

x
−2 .

The equation f ′(x) = 0 is then

3p
x
−2 = 0 ⇔ 2

p
x = 3 ⇔ x =

(
3

2

)2

= 9

4
.

So there is a possible extremum at x = 9
4 .

To draw a sign table, we look at f ′(x) for x < 9
4 and for x > 9

4 .1414Here, it is important to remember that f
is only defined for x > 0, so we cannot let x
be 0 or negative. 0 < x < 9

4 : f ′(1) = 3p
1
−2 = 1 > 0

x > 9
4 : f ′(9) = 3p

9
−2 =−1 < 0

The sign table looks like this

x :

f ′(x) :
f (x) :

9
4

0

maks.

+
↗

−
↘

0

The hatched area shows that the function is not defined for x ≤ 0.

Using the sign table, we see that the graph increases until x = 9
4 , and

then decreases. So, the function has a global maximum at x = 9
4 . The

y-coordinate is

f

(
9

4

)
= 6 ·

√
9

4
−2 · 9

4
= 6 · 3

2
− 9

2
= 9

2
.

Therefore f has a global maximum at
(9

4 , 9
2

)
.
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Inflection Points

Looking at the examples above, we might think that each time a graph
has a horizontal tangent it changes from increasing to decreasing or vice
versa. This is, however, not always the case, which we will see in the next
example.

Example 1.44
Here, we investigate the function

f (x) = x3 −12x2 +48x −62

in order to find its monotony intervals.

First, we determine f ′(x)

f ′(x) = 3x2 −12 ·2x +48 ·1 = 3x2 −24x +48 ,

and then we solve f ′(x) = 0, which is the quadratic

3x2 −24x +48 = 0 .

It turns out that this quadratic has only one solution:

x = 4 .

Next, we determine the sign of f ′(x) for x < 4 and x > 4,

x < 4 : f ′(0) = 3 ·02 −24 ·0+48 = 48 > 0

x > 4 : f ′(5) = 3 ·52 −24 ·5+48 = 3 > 0 .

Therefore, our sign table looks like this

x :

f ′(x) :
f (x) :

4

0

?

+
↗

+
↗

f ′(4) = 0, which means there is a horizontal tangent at x = 4, but we have
neither a minimum nor a maximum, since the function is increasing
before and after x = 4. The situation is illustrated in figure 1.15.

1

1
x

y

Figure 1.15: The point (4, f (4)) is an inflec-
tion point on the graph of f (x) = x3 −
12x2 +48x −62.

We say that the graph has an inflection point; the sign table looks like this

x :

f ′(x) :
f (x) :

4

0

infl.

+
↗

+
↗

and the function f is increasing for all x.

The term inflection point refers to the way the graph curves. It is not the
graph itself that is inflected, but its curvature. If we look at the graph, we
might notice that it looks like before the inflection point, and like
after the inflection point.
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Summary of the Method

We conclude this section with a general recipe for determining monotony
intervals and extrema for a given function f (x):

1. Determine f ′(x).

2. Solve the equation f ′(x) = 0. The solutions are the values of x at
which we have extrema or inflection points.

3. The solutions of f ′(x) = 0 divide the x-axis into intervals. Determine
the sign of f ′(x) in each of these intervals by inserting a number
from each interval into the formula for f ′(x).

It is also possible to graph the function to investigate its behaviour in
each of the intervals. In that case, this calculation and the sign table
are not needed.

4. Write down a sign table.

5. Use the sign table to draw your conclusions. If we want to determine
a maximum or a minimum, we need to calculate the y-coordinate
as well.

1.7 OPTIMISATION

In the last section, we described how to find the extrema of a function. We
can use this to optimise a given quantity. The purpose of optimisation is
to find out when a given quantity is as large or as small as possible.

If the quantity we wish to optimise is given as a function of one variable,
all we need to do is determine the maximum or the minimum. However,
things are not always this simple. E.g. if we want to determine when a
given area is as large as possible, the area might depend on both a length
and a width. If this is the case, we need to know how the length and the
width are connected.

How to actually do this, is most easily illustrated by examples.

Example 1.45
In a garden, we want to build a fence around a chicken coop (see fig-
ure 1.16). One side of the garden is walled, so we need only fence 3 sides
of a rectangle. If we have 20 m of fence, how should we build the fence, so
the enclosure has the largest possible area?

x

y

x

Figure 1.16: A fence around a chicken coop.
One side of the area is walled.

The length and the width of the rectangle, which make up the chicken
coop, we call x and y , see figure 1.16. The total length of the fence must
then correspond to the length of the three sides, i.e. 2x + y . Since our
fence is 20 m, we have

2x + y = 20 .

Isolating y in this equation yields

y = 20−2x .

The area of the rectangle is A = x · y , and this is the quantity that needs to
be as large as possible. The quantity depends on two variables, x, and y ,
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so we cannot determine the largest value straight away. But we just found
out that y = 20−x, therefore this area may also be calculated as

A = x · y = x · (20−2x) = 20x −2x2 ,

and this expression only depends on x.15 15Notice that 0 < x < 10. We have x > 10
because x is a length, and we have x < 10
because we only have 20 m of fence. The
two sides with length x must therefore have
a total length of less than 20 m. This means
that solutions for x which are not in the
interval from 0 to 10, must be discarded.

Where does this area have a maximum? To find the possible extrema of
the function, we use the method, we used in the preceeding section, i.e.
we solve A′ = 0.

Since A = 20x −2x2, we get

A′ = 20 ·1−2 ·2x = 20−4x ,

So, the equation A′ = 0 is

20−4x = 0 ⇔ x = 5 .

Now, we know that there is a possible maximum for the area where x = 5.
We graph A = 20x−2x2 (see figure 1.17), and here we clearly see that x = 5
corresponds to a maximum.

1 5

5

50

x

A

Figure 1.17: At x = 5, we have the largest
area.

Therefore, the area has a maximum where x = 5. This then gives us y = 10,
and the area A = 50, which we also see in the figure.

Example 1.46
We want to build a cylindrical container with a volume of 1 l, such that we
use as little material as possible. We can assume that the used material
has the same thickness every—which means that we use the least amount
of material, when the surface area is as small as possible.

A cylinder can be described by two parameters: Its radius r (at the top
and the bottom) and its height h, see figure 1.18. Since the volume is
measured in liters, and 1 l = 1 dm3, r and h are measured in decimeters. h

r

Figure 1.18: A cylinder can be described by
its height and radius.

The volume of a cylinder is

V = πr 2h ,

and since the volume is 1 l, we have

πr 2h = 1 ⇔ h = 1

πr 2 . (1.7)

The surface area of a cylinder is

A = 2πr 2 +2πr h .

If we insert the expression for g from (1.7), we get

A = 2πr 2 +2πr · 1

πr 2 = 2πr 2 + 2

r
.

Now, the area is a function of r . Where the area is smallest, we have A′ = 0.
Since

A′ = 4πr − 2

r 2 ,



34 Differential Calculus

we therefore have the equation

4πr − 2

r 2 = 0 ,

which has the solution

r = 3

√
1

2π
≈ 0.54 dm .

That this is indeed a minimum can be seen in figure 1.19.

0.1 0.54

2

5.54

x

A

Figure 1.19: We have the smallest surface
area, when the radius is 0.54 dm.

When we know the radius, r = 0.54 dm, we can calculate the height, since
equation (1.7) gives us

h = 1

π ·0.542 = 1.08 dm .

A cylindrical container with a volume of 1 l, therefore, has the least surface
area, when the radius is r = 0.54 dm and the height is h = 1.08 dm.

Example 1.47
In a garden, we want to plant a 10 m2 flower bed. The shape of the flower
bed is a figure made of a rectangle and a half circle, see figure 1.20.

We want to place decorative stones around the edge of the flower bed, so
we want to minimise the perimeter. In that case, what is then the length
of x and r in the figure?

x

x

2r

r

Figure 1.20: A 10 m2 flower bed is made up
of a rectangle and a half circle.

The flower bed is made up of a rectangle with sides x and 2r , and a half
circle, with radius r . Its area is then

A = 2r · x + πr 2

2
.

Since the area is 10 m2, this is equal to 10. Next, we isolate x.

2r x + πr 2

2
= 10 ⇔ x = 5

r
− πr

4
. (1.8)

We want to minimise the perimeter. Since the perimeter consists of three
straight lines and a half circle, the perimeter is

O = 2r +2x +πr .

We insert the expression for x from (1.8) into this expression for the
perimeter, and we get

O = 2r +2 ·
(

5

r
− πr

4

)
+πr =

(
2+ π

2

)
r + 10

r
.

To minimise this expression, we differentiate and find

O′ = 2+ π

2
− 10

r 2 .

We let this be equal to 0, and get the equation

2+ π

2
− 10

r 2 = 0 ,
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which has the solution

r = 10p
20+5π

≈ 1.67 m .

To find out, if this really is a minimum, we construct a sign table for O′ for
values of x greater than or less than 1.67.

0 < r < 1.67 : O′(1) = 2+ π

2
− 10

12 =−6.43 < 0

r > 1.67 O′(2) = 2+ π

2
− 10

22 = 1.07 > 0

The sign table looks like this

x :

f ′(x) :
f (x) :

1.67

0

min.

−
↘

+
↗

0

and we have a minimum, when the radius of the circle r = 1.67 m.

The length x is then (we use the result from (1.8))

x = 5

1.67
− π ·1.67

4
= 1.67 m .

Summary of the Method

The method we used in the examples above can be described in the
following way.

1. Translate a condition (e.g. fixed perimeter, fixed area, fixed volume)
into an equation. Then isolate one of the variables in this equation.

2. Write down an expression for the quantity, you wish to optimise,
and replace one of the variables with the expression found in step 1.
You now have a function of one variable.

3. Determine the extrema of the function found in step 2. Now, you
can determine the remaining measurements.

In principle, it is possible to have more than two variables in the expres-
sion, we wish to optimise. Then we need more than one condition to
write the expression as a function of one variable. This corresponds to
repeating steps 1–2.

1.8 RATE OF CHANGE

Using differentiation, we may find out where certain quantities have
maxima and minima. This can, for instance, be used for optimisation. But
we can also use differentiation to determine how fast certain quantities
grow at certain points.

We have the following definition.16 16Notice that in this definition, the inde-
pendent variable is called t instead of x. In
principle, we could have used x, but we use
t to emphasise that we are talking about
tid.
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Definition 1.48

Let f (t) be a function, where t is the time. Then f ′(t) is the rate of
change at the time t .

Example 1.49
In figure 1.21, we see the graph of f (t ), which shows us how the amount
of sparrows on a certain island increases over time (measured in years).

5

50

(40,440)

t (år)

Antal spurve

Figure 1.21: The population of sparrows at
time t (in years).

In the figure, we see the graph passing through the point (4,440). We have
also drawn a tangent through this point—the slope of the tangent is 5.25.
In other words

f (40) = 440 and f ′(40) = 5.25 .

This is a purely mathematical description, which may be translated into

1. After 40 years, there are 440 sparrows on the island.

2. After 40 years, the amount of sparrows increases at a rate of 5.25
sparrows per year.

Example 1.50
A jug of lukewarm water is put into a refrigerator. The temperature of the
water can then be described by the function

f (t ) = 5+15 ·e−0.01·t ,

where the time t is measured in minutes.

From this function, we can determine the rate of change f ′(45). First we
calculate

f ′(t ) = 0+15 · (−0.01) ·e−0,01·t =−0.15 ·e−0.01·t ,

and then
f ′(45) =−0.15 ·e−0.01·45 =−0.096 .

What does this number tell us?

First of all, we notice that the number is negative, i.e. the temperature is
decreasing. The value of the number shows us how much. Since f ′(45) =
−0,096, we have the following interpretation:

After 45 minutes in the refrigerator, the temperature of the water decreases
at a rate of 0.096◦C per minute.
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Descriptive statistics is a branch of mathematics concerned with describing
certain data. The purpose is to arrive at a description or a summary of a
(possibly large) data set.

We can describe a data set in several ways. We might

• list the data set in a table, possibly grouping some of the numbers,

• calculate some descriptors, i.e. certain numbers that describe the
data set, or

• draw diagrams to illustrate the data set.

2.1 STATISTICS WITH UNGROUPED DATA

The term “ungrouped data” refers to—as the name implies—data that
have not been sorted into groups, i.e. raw data.

Imagine, we ask a class of 25 students how many hours of TV they watched
yesterday. The answers might be like those listed in table 2.1.

Table 2.1: TV habits of students.

Hours of TV (unsorted)

1 2 1 1 3

3.5 0 0.5 2 1

2.5 2 0.5 1 1.5

2 2.5 0 3 1

1.5 0 1 2 0

The usefulness of this table is limited. The first thing we do is therefore to
sort the numbers.This is done in table 2.2.

Table 2.2: Hours of TV, sorted ascendingly.

Hours of TV (sorted)

0 0 0 0 0.5

0.5 1 1 1 1

1 1 1 1.5 1.5

2 2 2 2 2

2.5 2.5 3 3 3.5

As we see in table 2.2, some of the numbers occur several times. It is,
therefore, a good idea to write down a table of the different numbers and
their frequencies (i.e. how frequently they occur). This table still consists
of ungrouped data, since we do not group different observations, but only
list how many times, the different numbers occur. As well as counting the
frequencies, we calculate a few other numbers for each observation. The
table might look like this:.

37
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Observation, x Frequency, n Relative freq., f Cum. rel. fr., F

0 4 16% 16%

0.5 2 8% 24%

1 7 28% 52%

1.5 2 8% 60%

2 5 20% 80%

2.5 2 8% 88%

3 2 8% 96%

3.5 1 4% 100%

Total 25 100%

The meaning of the different columns is explained in the following defini-
tion:

Definition 2.1

For a data set with N observations, which is made up of M different
observations, x1, x2, . . . , xM , we define:

1. The frequency ni is the number of times xi occurs in the data
set.

Note that n1 +n2 +·· ·+nM = N .

2. The relative frequency fi is the frequency divided by the total
number of observations, i.e. fi = ni

N .

3. The cumulative relative frequency Fi is the sum of relative fre-
quencies up to and including the relative frequency of the ob-
servation xi , i.e.

Fi = f1 + f2 +·· ·+ fi .

The relative frequency shows the percentage of students, which have
watched TV for 0 hours, 0.5 hours, etc. This is useful if we want to compare
two classes with a different number of students. We usually write the
relative frequency as a percentage, but this is not necessary—we might
just as well write the relative frequencies as numbers between 0 and 1, i.e.
0.16 instead of 16%.

The cumulative relative frequency shows how many students watched
TV for e.g. 1 hour or less. The cumulative relative frequency F3 for the
observation x3 (1 hour) is 52%. This means that 52% of the students have
watched TV for 1 hour or less. We find the number by adding the relative
frequencies for x1, x2 and x3:

F3 = f1 + f2 + f3 = 16%+8%+28% = 52% .

2.2 MEAN AND STANDARD DEVIATION

Eventhough a table greatly increases our ability to compare different
data sets, it is sometimes easier if we can describe the data sets by a few
numbers, so-called descriptors.
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A descriptor could be e.g. the mean, which tells us what the average
observation is. We find the mean by adding all the observations and
dividing by the total number of observations. For the numbers in table 2.2,
the mean is

µ= 0+0+0+0+0.5+·· ·+3+3+3.5

25
= 1.42 .

Since we already counted the frequencies for the different observations
(e.g. in the table above we see that the observation “0” occurs 4 times), we
can also use the frequencies, and the calculation becomes

µ= 0 ·4+0.5 ·2+1 ·7+·· ·+3.5 ·1

25
= 1.42 .

The result is, of course, still the same.

Since we obtain the relative frequencies by dividing the frequencies by
the total number of observations, we could have just divided all of the
frequencies by 25 to begin with, and get1 1Notice that the relative frequencies are

written as decimals, instead of percentages.
E.g. the relative frequency of the first ob-
servation is not 16, but 16%, which is the
same as 0.16.

µ= 0 ·0.16+0.5 ·0.08+1 ·0.28+·· ·+3 ·0.08+3.5 ·0.04 = 1.42 .

The last calculation is the one we use in our definition:

Definition 2.2

For a data set of M different observations x1, x2, . . . , xM with corre-
sponding relative frequencies f1, f2, . . . , fM , we define the mean µ and
the standard deviation σ as

1. µ= x1 · f1 +x2 · f2 +·· ·+xM · fM .

2. σ=
√

(x1 −µ)2 · f1 + (x2 −µ)2 · f2 +·· ·+ (xM −µ)2 · fM .

The mean tells us what the average observation is. So, when µ = 1.42
for the data set above, it means that each of the 25 students on average
watched 1.42 hours of TV.

The standard deviation is a little more complicated, but it describes how
far the observations on average are from the mean. If every student had
watched TV for the same amount of time, the standard deviation would
beσ= 0. So, in a sense, the standard deviation measures how “spread out”
the data are.

For the data set in question, the standard deviation is

σ=
√

(0−1.42)2 ·0.16+ (0.5−1.42)2 ·0.08+·· ·+ (3.5−1.42)2 ·0.04

= 0.987 .

Most CAS have built-in tools to calculate the mean and the standard
deviation from raw/ungrouped data.
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2.3 QUARTILES

The mean of any data set is highly sensitive to extreme values. If one
student had watched TV for 20 hours, the mean would have been a lot
greater. Therefore, it sometimes makes sense to describe instead a data
set using the median, which is the “middle” value of the data set.

If we list all of the 25 numbers from table 2.2, the median is the number
in the middle, i.e. the 13th number:22If we have an even number of observa-

tions, the median is the average of the two
observations in the middle.

0, 0, 0, 0, 0.5, 0.5, 1, 1, 1, 1, 1, 1, 1, 1.5, 1.5, 2, 2, 2, 2, 2, 2.5, 2.5, 3, 3, 3.5
median

So, the median is 1. This means that half of the students watched TV for 1
hour or less. The other half watched TV for 1 hour or more. It is important
to remember that this has nothing to do with the mean, and, as we can
see, the two numbers are indeed different.

Sometimes we want more information than what we get from just the
median. We find the median by dividing the data set into two halves. So,
we might get more information by dividing the data set into four quarters.
Then we find the so-called quartiles:

0, 0, 0, 0, 0.5, 0.5, 1, 1, 1, 1, 1, 1, 1, 1.5, 1.5, 2, 2, 2, 2, 2, 2.5, 2.5, 3, 3, 3.5
medianlower quartile upper quartile

The lower quartile is the median of the lower half of the data. Since, in this
case, the lower half has an even number of observations (12), the lower
quartile is the average of the two values in the middle (the 6th and the
7th). Thus the lower quartile is

Q1 = 0.5+1

2
= 0.75 .

The median is the same as before, i.e. the median is

Q2 = 1 .

The upper quartile is the median of the upper half of the data. Here, we
must again take the average of two values, i.e.

Q3 = 2+2

2
= 2 .

So, the quartiles are the three numbers Q1, Q2 og Q3.

The quartiles of the hours of TV watched by the students are (0.75,1,2).

Instead of “lower quartile, median, and upper quartile” we sometimes call
them “1st, 2nd and 3rd quartile”.
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Definition 2.3

For an ungrouped data set, we define the following quantities:

• The median (or 2nd quartile) Q2, which is the middle value of
the observations. If there is an even number of observations,
the median is the average of the two middle values.

• The lower (or 1st) quartile Q1, which is the median of the lower
half of the observations.

• The upper (or 3rd) quartile Q3, which is the median of the
upper half of the observations.

The quartiles is the ordered set of numbers (Q1,Q2,Q3) of all the
quartiles.

When, in our case, the lower quartile is 0.75, it shows us that a quarter
(25%) of the students watched TV for 0.75 hours or less, while three quar-
ters (75%) watched TV for 0.75 hours or more.

The upper quartile, Q3 = 2, shows us that three quarters of the students
watched TV for 2 hours or less, while a quarter watched TV for 2 hours or
more.

So, the quartiles provide a useful, short description of our data set.

2.4 DIAGRAMS

In this section, we show 3 different types of diagrams, which can be used
to describe a data set:

• A bar chart, which is useful if we want to illustrate a single data set.

• A cumulative relative frequency graph.

• A box plot, which is useful when we want to compare different data
sets.

Bar Chart

Our investigation of the TV habits of students yielded the following table:

Observation, x Frequency, n Relative freq., f Cum. rel. fr., F

0 4 16% 16%

0.5 2 8% 24%

1 7 28% 52%

1.5 2 8% 60%

2 5 20% 80%

2.5 2 8% 88%

3 2 8% 96%

3.5 1 4% 100%

Total 25 100%
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This table enables us to draw a bar chart. The x-axis represents the indi-
vidual observations, and at each observation we draw a bar, whose height
equals the frequency of the observation.

0 0.5 1 1.5 2 2.5 3 3.5

1

2

3

4

5

6

7

x

n

Figure 2.1: The TV hours of the students as
a bar chart. The y-axis represents the fre-
quency.

0 0.5 1 1.5 2 2.5 3 3.5

5%

10%
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20%

25%

30%
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f

Figure 2.2: The TV hours of the students as
a bar chart. The y-axis represents the rela-
tive frequency.

In figure 2.1, we see a bar chart where the height of the columns indicate
the frequency. Figure 2.2 shows the same bar chart, but here the heights
indicate the relative frequencies. The two charts are identical except for
the numbers on the y-axis.

If we just want a quick description of the data set, we might just as well use
the frequencies. But if we want to compare two data sets, it is easier when
we use the relative frequencies—especially if the two data sets contain
a different number of observations. This might be the case if we were
comparing two school classes with a different number of students.

Cumulative Relative Frequency Graph

A cumulative relative frequency graph is a graph of the cumulative relative
frequencies. We plot the cumulative relative frequency at the correspond-
ing observation, and the we move horizontally until we get to the next
observation, where we jump to the next cumulative relative frequency.
In this way, we get a graph that looks a bit like a set of steps—a function,
which has a such a graph is called a step function.

1 2 3

20%

40%

60%

80%

100%

x

cumulative rel. fr.

Figure 2.3: Cumulative relative frequency
graph of the TV hours of the students.

It is possible to use cumulative relative frequency graphs to compare
different data sets. But the box plot, which we describe below, is a much
easier tool to use for comparisons.

Box Plot

A box plot is a diagram drawn using only the quartiles. When we do this,
we discard a lot of information. But in return, we get a diagram which
shows us how the numbers are distributed in way that is easy to read.

A box plot of our data set can be seen in figure 2.4. We draw vertical lines
at the minimum value (0), the lower quartile (0.75), the median (1), the
upper quartile, and at the maximum value (3.5). Then we connect the
vertical lines as shown in the figure.

0 1 2 3 4

Figure 2.4: Box plot of the TV hours.

The box contains the middle half of the observations, while the horizontal
lines at both ends show the hours of TV watched for the lower and the
upper quarter of the class.

When we draw box plots of different distributions, they are easy to com-
pare. If we measured the minimum and maximum values, and the quar-
tiles for two different classes, we might get something like this table (class
A is the one we have looked at all along):

Class Minimum value Q1 Q2 Q3 Maximum value

A 0 0.75 1 2 3.5

B 0 1 1.5 1.75 4
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If we just look at the numbers, it is hard to tell what the difference is
between the two classes. If, however, we draw a box plot for both them
(see figure 2.5), they are quite easy to compare.

0 1 2 3 4

A

B

Figure 2.5: Using box plots to compare
hours of TV watched.

Here, we see that even though class B has at least one student who
watched more TV than any student in class A, the lower 75% of class
B have watched a little less TV than the lower 75% of class A. The middle
half of class B is also closer than the middle half of A, which means that
the number of TV hours is not as spread out for B as it is for A.

2.5 STATISTICS WITH GROUPED DATA

We talk about grouped data, when the data is grouped in intervals. It is
useful to group the data if we have a large data set with many different
observations.

In table 2.3, we see a listing of Danish gross incomes. Here we have so
many observations that it makes no sense to list all the observed incomes
behind the table. We have therefore grouped the different incomes in
intervals.

Table 2.3: Annual gross incomes in Den-
mark.[1]

Interval Frequency

0–100 000 628 423

100 000–200 000 1 074 944

200 000–300 000 1 054 700

300 000–400 000 889 807

400 000–500 000 469 896

500 000–750 000 334 062

Looking at the table, it is impossible to see, whether an income of exactly
DKK 100 000 should be included in the first or the second interval. It is
therefore a good idea to use mathematical notation for the intervals to
describe if such incomes are in one interval or another.

The frequencies in the table turn out to be quite large numbers, and so
it makes sense to calculate the relative frequencies instead. A table with
that information looks like this:

Interval Frequency, n Relative fr., f Cum. rel. fr., F

[0;100000[ 628 423 14.1% 14.1%

[100000;200000[ 1 074 944 24.1% 38.3%

[200000;300000[ 1 054 700 23.7% 62.0%

[300000;400000[ 889 807 20.0% 81.9%

[400000;500000[ 469 896 10.6% 92.5%

[500000;750000[ 334 062 7.5% 100.0%

Total 4 451 832 100,0%

2.6 MEAN AND STANDARD DEVIATION

We cannot calculate the mean and the standard deviation like we did for
ungrouped data. This is impossible because we do not know how the
incomes are distributed in the different intervals, since we do not have
the raw data from which the table is made.

Instead, we assume that the incomes are evenly distributed in the intevals.
This allows us to use the midpoints as though they were the observations.
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Definition 2.4

For a data set, which is grouped into the intervals [a1;b1[ , [a2;b2[ , . . . ,
[aN ;bN [ , we define the mean µ and the standard deviation σ:

1. µ= m1 · f1 +m2 · f2 +·· ·+mN · fN .

2. σ=
√

(m1 −µ)2 · f1 + (m2 −µ)2 · f2 +·· ·+ (mN −µ)2 · fN .

fi is the relative frequency of the interval, and mi is the midpoint of
the interval, mi = ai+bi

2 .

To calculate the mean and the standard deviation of the data set above,
we add a new column of interval midpoints:

Interval Interval midpoint, m Relative frequency, f

[0;100000[ 50 000 14.1%

[100000;200000[ 150 000 24.1%

[200000;300000[ 250 000 23.7%

[300000;400000[ 350 000 20.0%

[400000;500000[ 450 000 10.6%

[500000;750000[ 625 000 7.5%

The mean is then

µ= 50000 ·0.141+150000 ·0.241+·· ·+625000 ·0.075 = 266859 .

This means the average income in the table is DKK 266 859.

The standard deviation is

σ=
√

(50000−266859)2 ·0.141+·· ·+ (625000−266859)2 ·0.075

= 156684 .

So, the standard deviation is DKK 156 684.

2.7 DIAGRAMS

In this section, we describe three ways of illustrating grouped data:

• Histograms, which correspond to bar charts of ungrouped data.

• Cumulative relative frequency graphs, or ogives which can be used
to determine the quartiles.

• Box plots, which is exactly the same type of diagram as a box plot of
ungrouped data.

Histograms

In a histogram, the relative frequencies of the intervals are drawn as
columns. For ungrouped data, we could draw a bar chart—and the height
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of the bars corresponded to the relative frequencies. Here, we cannot
do that, since then wider intervals would carry more weight than narrow
intervals.

Instead, we let the frequency determine the area of the corresponding
column, see figure 2.6.

0 400 000 800 000

10%

DKK

Figure 2.6: Histogram of the income distri-
bution.

When the relative frequency is given by the area, we need to show which
area corresponds to a certain percentage. This is illustrated in the figure,
where the rectangle in the upper right hand corner shows, which area
corresponds to 10%.

Since the area shows the relative frequency, we have no use for a y-axis,
so this is usually omitted.

When we draw histograms, it is important to remember that

in a histogram, the relative frequency is the area of the corre-
sponding column.

If, however, all the intervals are of equal width, we can let the height
correspond to the relative frequency. Many CAS work this way. But it is
important to remember that the intervals then have to be of equal width.

Ogives

An ogive is a plot of the cumulative relative frequencies. The graph illus-
trates how many percent of the data set is below a certain value. Since the
graph shows how many percent is below the value, the cumulative relative
frequencies are plotted as a function of the end point of the intervals.

We therefore add a column of interval end points to the table above:

Interval Interval end point Cumulative rel. freq.

[0;100000[ 100 000 14.1%

[100000;200000[ 200 000 38.3%

[200000;300000[ 300 000 62.0%

[300000;400000[ 400 000 81.9%

[400000;500000[ 500 000 92.5%

[500000;750000[ 750 000 100.0%

We then draw the ogive by plotting the cumulative relative frequencies as
a function of the end points of the intervals.

400 000 800 000
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80%

100%

DKK

Cumulative rel. fr.

Figure 2.7: Ogive of the income distribution.

Since the ogive shows us, how many percent of the data is below a certain
value, we can use it to investigate e.g. how many percent have an income
below DKK 250 000, or what the maximum income is for the 80% lowest
paid. This last number is called the 80th percentile; we have the following
definition:
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(a) The 80th percentile.

250 000 750 000

20%

40%

60%

80%

100%

50.2%
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Cumulative rel. fr.

(b) Incomes below DKK 250 000?

Figure 2.8: In the figure to the left, we find
the 80th percentile. This numbers shows
us that 80% have an income below DKK
390 452.
To the right, we find the number corre-
sponding to 250 000 on the x-axis. This
number tells us that 50.2% have an income
below DKK 250 000.

Definition 2.5

For a statistical data set, the pth percentile is the observation that has
a cumulative relative frequency of p%.

In figure 2.8, we see how to find the 80th percentile. We start at 80% on
the y-axis and find the corresponding value on the x-axis. The number
390 452 shows us that 80% of the people in the statistic have an income
below DKK 390 452. Then we also know that 20% have an income above
DKK 390 452.

The figure also shows us, which percentile corresponds to an income
of DKK 250 000. Here, we start at 250 000 on the x-axis and find the
corresponding number on the y-axis. This number is 50.2%, which means
that 50.2% have an income below DKK 250 000. So, 49.8% have an annual
income above DKK 250 000.

Using the ogive we can find the quartiles. We have this definition:

Definition 2.6

Using the ogive of a statistical data set, we find the quartiles (Q1,Q2,Q3):

1. The lower quartile, Q1 is the 25th percentile.

2. The median, Q2 is the 50th percentile.

3. The upper quartile, Q3 is the 75th percentile.

In figure 2.9, we see how to find the quartiles. We start at 25%, 50%, and
75% on the y-axis and then find the corresponding values on the x-axis.
We find the quartiles

(145041,249367,365327) .

These numbers show that

• 25% have an income below DKK 145 041.

• 50% have an income below DKK 249 367.

• 75% have an income below DKK 365 327.
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200 400 600 800

10%

25%

50%

75%

100%

145 041
249 367

365 327

DKK

Cumulative rel. fr. Figure 2.9: How to find the quartiles on the
ogive of the income distribution.

Box Plots

Drawing a box plot of a grouped data set is no different from drawing a
box plot of an ungrouped data set. The only difference between the two is
how we find the quartiles. After they are found, we do exactly the same.

For the income distribution we looked at above, the quartiles were

(145041,249367,365327) .

The minimum value was 0, and the maximum value was 750 000.

A box plot of this distribution will, therefore, look like figure 2.10.
0 250 000 500 000 750 000

DKK

Figure 2.10: Box plot of the income distribu-
tion.





3Integral Calculus

Integral calculus is, in essence, the opposite of differential calculus. In
chapter 1, we looked at derivatives, which describe the slope of tangents
to the graph. If we do this calculation “the other way around”, we find the
so-called primitive function or antiderivative.

3.1 PRIMITIVE FUNCTIONS

We have the following definition:

Definition 3.1

Let f be a function. A differentiable function F , where

F ′(x) = f (x) ,

is called a primitive function of f .

A primitive function1 F of a function f is a function that has f as its 1Primitive functions are often denoted by
capital letters, such that a primitive func-
tion of f (x) is called F (x), and a primitive
function of h(x) is called H(x). In princi-
ple, we can denote primitive functions by
whichever letter we want, but it is easier to
spot their origin, if we use this convention.

derivative. Examining whether a given function is a primitive function of
another can therefore be done by differentiation.

Example 3.2
Is F (x) = x3 +2x −5 a primitive function of f (x) = 3x2 +2?

We can find out by differentiating F :

F ′(x) = 3x2 +2 ·1−0 = 3x2 +2 .

When we differentiate F , we get the formula for f , i.e. F ′(x) = f (x) and F
is a primitive function of f .

Example 3.3
Is H(x) = 4x + ln(x) a primitive function of g (x) = 2x + 1

x ?

When we differentiate H(x), we get

H ′(x) = 4 ·1+ 1

x
= 4+ 1

x
.

This is not the same as h(x), i.e. H is not a primitive function of h(x).

49
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Example 3.4
F1(x) = x2 +ex +4 and F2(x) = x2 +ex −17 are both primitive functions of
f (x) = 2x +ex .

This is because, when we differentiate F1 and F2, we get

F ′
1(x) = 2x +ex +0 = 2x +ex

F ′
2(x) = 2x +ex −0 = 2x +ex .

So, F ′
1(x) = F ′

2(x) = f (x) and both functions are primitive functions of
f (x).

From example 3.4, we see that it is possible for a function to have more
than one primitive function. The two primitive functions in the example
are, however, not that different. The only difference is a constant. Actually,
the reason a function has several primitive functions is that when we
differentiate a constant, we always get 0.

This means we can always find a new primitive function by adding a
constant to another primitive function, since added constants disappear
when we differentiate.

Theorem 3.5

If F1(x) and F2(x) are both primitive functions of f , then

F1(x)−F2(x) =C ,

where C is a constant.

Proof
Since F1(x) and F2(x) are both primitive functions of f , we have22In this calculation, we use that since F1

and F2 are both primitive functions of f ,
we must have F ′

1(x) = f (x) and F ′
2(x) =

f (x).

(
F1(x)−F2(x)

)′ = F ′
1(x)−F ′

2(x) = f (x)− f (x) = 0 .

If we differentiate the difference F1(x)−F2(x) we get 0.

It is only possible to get 0, when we differentiate a constant, and therefore

F1(x)−F2(x) =C ,

where C is a constant. �

So, theorem 3.5 states that although any given function has an infinite
amount of primitive functions, we can find them all by adding constants
to another primitive function.

Example 3.6
F (x) = x2 + ln(x) is a primitive function of f (x) = 2x + 1

x , because

F ′(x) = 2x + 1

x
= f (x) .

But then

F1(x) = x2 + ln(x)+3

F2(x) = x2 + ln(x)−14

F3(x) = x2 + ln(x)+365749

are also primitive functions of f (x).
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3.2 INDEFINITE INTEGRALS

Calculating a primitive function of a function f (x) is called integrating
f (x). We have the following definition:3 3The notation

∫ ·dx means that we inte-
grate everything between

∫
and dx.

So, the symbol dx is not a mathematical
quantity. It merely shows us, where the in-
tegration ends, and that our independent
variable is called x.

Definition 3.7

Let f be a function. The indefinite integral of f (x) is the set of all
primitive functions of f (x). It is denoted by∫

f (x)dx .

The function f (x) is called the integrand.

When we calculate the definite integral, we show that
∫

f (x)dx is the set
of all primitive functions by writing an added constant.

Example 3.8
Here, we determine

∫
(2x +3)dx.∫

(2x +3)dx = x2 +3x +C .

x2 +3x is a primitive function of 2x +3, and the constant C shows that we
have found every primitive function.

The constant C in example 3.8 is called the constant of integration.

Table 3.1 shows the indefinite integrals of a few simple functions. If we
want to be certain that these are indeed the indefinite integrals, we can
differentiate the right hand column to see if this yields the left hand
column.

Table 3.1: Indefinite integrals of some sim-
ple functions.

f (x)
∫

f (x)dx

a ax +C

x 1
2 x2 +C

x2 1
3 x3 +C

xn 1
n+1 xn+1 +C

1
x ln(x)+C

ex ex +C

eax 1
a eax +C3.3 CALCULATION RULES

Just as there are rules for differentiation, we have rules for integration.

Theorem 3.9

Let f be a function, and c be an arbitrary constant. Then∫
c · f (x)dx = c ·

∫
f (x)dx .

Proof
If we differentiate the right hand side of the equation in the theorem, we
get (

c ·
∫

f (x)dx

)′
= c ·

(∫
f (x)dx

)′
= c · f (x) .

The first equality follows from a differentiation rule, theorem 1.11. The
second follows from the fact that

∫
f (x)dx is the set of primitive functions

of f .
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We have now shown that c ·∫ f (x)dx is the set of primitive functions of
c · f (x), but this means∫

c · f (x)dx = c ·
∫

f (x)dx ,

and this proves the theorem. �

Theorem 3.9 can be used to find integrals of functions that are not listed
in table 3.1.

Example 3.10
What is

∫
6x2 dx?

6x2 is not listed in table 3.1, but x2 is. We can now use theorem 3.9 to get∫
6x2 dx = 6 ·

∫
x2 dx = 6 · 1

3 x3 +C = 2x3 +C .

The next important rules are:

Theorem 3.11

Let f and g be functions. Then

1.
∫ (

f (x)+ g (x)
)

dx =
∫

f (x)dx +
∫

g (x)dx , and

2.
∫ (

f (x)− g (x)
)

dx =
∫

f (x)dx −
∫

g (x)dx .

Proof
We only prove the first part of the theorem. The second part may be
proven analogously.

Since (∫
f (x)dx +

∫
g (x)dx

)′
=

(∫
f (x)dx

)′
+

(∫
g (x)dx

)′
= f (x)+ g (x) ,

we know that
∫

f (x)dx +∫
g (x)dx is a primitive function of f (x)+ g (x),

i.e. ∫ (
f (x)+ g (x)

)
dx =

∫
f (x)dx +

∫
g (x)dx ,

which proves the theorem. �

Example 3.12
What is

∫
(ex +x)dx?

ex + x is not listed in table 3.1, but ex and x are. We can therefore use
theorem 3.11, and get∫

(ex +x)dx =
∫

ex dx +
∫

x dx = ex + 1
2 x2 +C .

We can also use theorems 3.9 and 3.11 in the same calculation, as in this
example:
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Example 3.13
We calculate the indefinite integral

∫
(9x2 +4x −3)dx like this:∫

(9x2 +4x −3)dx = 9 ·
∫

x2 dx +4 ·
∫

x dx −
∫

3dx

= 9 · 1
3 x3 +4 · 1

2
x2 −3 · x +C

= 3x3 +2x2 −3x +C .

Here, we use both of the theorems 3.9 and 3.11 as well as table 3.1.

3.4 FINDING PRIMITIVE FUNCTIONS

In the preceding section, we saw how to find the indefinite integral of
a function. The indefinite integral is the set of all primitive functions.
There are infinitely many primitive functions, owing to the fact that the
derivative of a constant is 0.

If we are looking for a certain primitive function, we therefore need more
information than a formula for the integrand.

This information might be

1. a point, which the graph of the primitive function passes through,
or

2. the equation of a tangent to the graph of the primitive function.

A Point on the Graph of the Primitive Function

Since the primitive functions of any given function are equal up to a
constant, the graphs of the primitive functions can be found by shifting a
graph of one primitive function vertically.

So, if we know a point, which the graph of our primitive function passes
through, we can find the value of the constant of integration, C . And then,
we have the formula for the primitive function we are looking for.

Example 3.14
Here, we find the primitive function F (x) of f (x) = x3 + 2x − 1, whose
graph passes through P (2,10).

First, we set F (x) equal to the indefinite integral of f (x):

F (x) =
∫

(x3 +2x −1)dx = 1
4 x4 +x2 −x +C .

C now has a fixed value, i.e. the value for which the graph of F (x) passes
through P (2,10).

In figure 3.1, we see a few of the graphs of the primitive functions of f . The
graph that passes through P (2,10) is the graph of the primitive function,
we are looking for.

1

5

P (2,10)

x

y

Figure 3.1: Graphs of some of the primitive
functions of f (x) = x3 +2x −1.

We know that the primitive function has the formula

F (x) = 1
4 x4 +x2 −x +C .
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We also know that its graph passes through the point P (2,10). If this is
true, then F (2) = 10, which gives us the equation

F (2) = 1
4 ·24 +22 −2+C = 10 .

Solving this equation, we get

1
4 ·24 +22 −2+C = 10 ⇔ C = 4 .

We can now write a formula for F :

F (x) = 1
4 x4 +x2 −x +4 .

The primitive function of f (x), whose graph passes through P (2,10), has
this formula.

Example 3.15
Which primitive function of g (x) = ex −3x has a graph passing through
the point Q(0,−7)?

The primitive function has the formula

G(x) =
∫

(ex −3x)dx = ex − 3
2 x2 +C .

Since the graph of G passes through Q(0,−7), we have

G(0) = e0 − 3
2 ·02 +C =−7 .

We solve this equation

e0 − 3
2 ·02 +C =−7 ⇔ 1−0+C =−7 ⇔ C =−8 .

Our primitive function therefore has the formula

G(x) = ex − 3
2 x2 −8 .

Primitive Function, Whose Graph has a Certain Tangent

We can also determine a formula for a certain primitive function if we
know the equation of a tangent to its graph.

Example 3.16
In this example, we determine the primitive function of f (x) = 4

x , whose
graph has tangent with the equation y = 4x +1.

We call the primitive function F (x). Its formula is

F (x) =
∫

4

x
dx = 4 · ln(x)+C .

In figure 3.2, we see the graphs of some of the primitive functions of f (x)
and the line y = 4x +1. One of the graphs has the line as a tangent.

1

2

x

y

Figure 3.2: Graphs of some of the primitive
functions of f (x) = 4

x and the line y = 4x +
1.

If y = 4x +1 is tangent to the graph of the primitive function, we know
that the graph has slope 4 at some point. The slope of the tangents of F (x)
are given by F ′(x), but since F is a primitive function of f (x), F ′(x) = f (x).
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Determining where F has slope 4 is then the same as determining the
value of x for which f (x) = 4. We therefore solve this equation:

f (x) = 4 ⇔ 4

x
= 4 ⇔ x = 1 .

Now we know that the point of tangency has x-coordinate x = 1. To find
the y-coordinate of the point, we look again at the equation of the tangent.
The graph and the tangent both pass through the point of tangency. We
cannot find the point of tangency using the formula for F (x), because we
do not yet know C , but we can use the equation of the tangent.

Inserting x = 1 into the equation y = 4x +1 yields

y = 4 ·1+1 = 5 .

So, the graph of F (x) and the line both pass through the point (1,5). We
can now use this to determine C , because

F (1) = 4 · ln(1)+C = 5 ⇔ 4 ·0+C = 5 ⇔ C = 5 .

Now that we know C , we know the entire formula for F :

F (x) = 4 · ln(x)+5 .

When we know a point that the graph of a primitive function passes
through, only one primitive functions fits this piece of information. But
if we know the equation of a tangent, the graphs of several primitive
functions may have this tangent.

Example 3.17
In this example, we find the primitive function of f (x) =−x3 +3x, whose
graph has the line y =−2x +8 as a tangent.

The formula for the primitive function is

F (x) =
∫

(−x3 +3x)dx =−1
4 x4 + 3

2 x2 +C .

We now look for the value of x where the graph has slope −2 (since this is
the slope of the tangent):

f (x) =−x3 +3x =−2 .

Solving this equation yields two solutions:

x =−1 ∨ x = 2 .

So apparently, two different primitive functions have the line y =−2x +8
as a tangent to their graphs.

We therefore need to determine two points of tangency. The first point
has x-coordinate x =−1 and y-coordinate

y =−2 · (−1)+8 = 10 ,
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and the second point has x-coordinate x = 2 and y-coordinate

y =−2 ·2+8 = 4 .

The graph of the first primitive function passes through the point (−1,10),
and here we find C by solving the equation

F (−1) =−1
4 · (−1)4 + 3

2 · (−1)2 +C = 10 ⇔ C = 35
4 .

The graph of the second primitive function passes through (2,4), so here
we solve the equation

F (2) = 1
4 ·24 + 3

2 ·22 +C = 4 ⇔ C = 2 .

So, the function f (x) =−x3+3x has two primitive functions, whose graphs
have the line y =−2x +8 as a tangent:

F1(x) =−1
4 x4 + 3

2 x2 + 35
4

F2(x) =−1
4 x4 + 3

2 x2 +2 .

1

2

x

y

Figure 3.3: The two primitive functions of
f (x) = −x3 + 3x, whose graphs have the
line y =−2x +8 as a tangent. In figure 3.3, we see the graphs of the two functions as well as the tangent.

3.5 DEFINITE INTEGRALS

Until now, we have only looked at indefinite integrals. But if we have
indefinite integrals, there is of course also something called definite inte-
grals.

If we have a function f and two numbers a and b, we define a num-
ber called the definite integral of f in the interval [a;b]. This number is
calculated using a primitive function.44Which primitive function we use does not

matter, therefore we usually choose the
simplest, i.e. where the constant of inte-
gration is C = 0.

Definition 3.18

Let F be a primitive function of f , and let a and b be numbers. The
definite integral of f in the interval [a;b] is the number∫ b

a
f (x)dx = F (b)−F (a).

The two numbers a and b are called the limits of integration.

Note that the indefinite integral
∫

f (x)dx is a function,5 whereas the5Actually infinitely many functions, since
the constant of integration C may have any
value.

definite integral
∫ b

a f (x)dx is a number.

When we calculate the number
∫ b

a f (x)dx, we first find a primitive func-
tion F (x) and then calculate F (b)−F (a) by inserting the numbers a and
b.

Example 3.19
If we want to calculate

∫ 4
1 x2 dx, we first need to find a primitive function of

x2. This could be F (x) = 1
3 x3. Then we calculate F (4)−F (1), i.e. 1

3 ·43− 1
3 ·13.
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We can write the calcultion like this:∫ 4

1
x2 dx =

[
1
3 x3

]4

1
= 1

3 ·43 − 1
3 ·13 = 21.

The indefinite integral has the value 21.

Notice that we wrote the primitive function in brackets (with the limits
attached), before we inserted the numbers—this is done to make the
calculation easier to read.

Corresponding to the theorems 3.9 and 3.11 we have the following:

Theorem 3.20

Let the function f and g , and the interval [a;b] be given. Then

1.
∫ b

a
c · f (x)dx = c ·

∫ b

a
f (x)dx ,

2.
∫ b

a
( f (x)+ g (x))dx =

∫ b

a
f (x)dx +

∫ b

a
g (x)dx , and

3.
∫ b

a
( f (x)− g (x))dx =

∫ b

a
f (x)dx −

∫ b

a
g (x)dx .

We omit the proof, since it follows immediately from the corresponding
theorems for indefinite integrals.

For definite integrals we also have the following theorem:

Theorem 3.21

Let f be a function defined in an interval containing the numbers a,
b and c. Then ∫ b

a
f (x)dx =

∫ c

a
f (x)dx +

∫ b

c
f (x)dx.

Proof
Let F be a primitive function of f . From definition 3.18, we get

∫ b

a
f (x)dx = F (b)−F (a)

= F (b)−F (c)+F (c)−F (a)

=
∫ b

c
f (x)dx +

∫ c

a
f (x)dx,

which proves the theorem. �

Theorem 3.21 merely states that we can split a definite integral into several
integrals by dividing the interval [a;b] into subintervals.
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3.6 AREAS BELOW GRAPHS

It turns out that there is a connection between the definite integral and the
area below the graph of a function. For a function f , the area between the
graph and the x-axis between the two values x = a and x = b is

∫ b
a f (x)dx,

see figure 3.4. However, this is only true if the graph lies above the x-axis
in the entire interval [a;b].

a b

f

x

y

Figure 3.4: The marked area is
∫ b

a f (x)dx.

We can write this statement as a theorem:

Theorem 3.22

Let f be a function defined in the interval [a;b]. If f (x) ≥ 0 for all
x ∈ [a;b], then the area A of the region bounded by the graph of f
and the x-axis in the interval [a;b] is

A =
∫ b

a
f (x)dx .

Proof
First, we assume that f is increasing in the entire interval [a;b].

Then, we define a function A(x) in the interval [a;b]. The function value
of A(x) is the area between the graph of f and the x-axis in the interval
[a; x], see figure 3.5.

a x b

f

x

y

Figure 3.5: The value of A(x) corresponds
to the marked area.

We see from this definition that A(a) = 0, and A(b) must be the entire area
between the graph of f and the x-axis in the interval [a;b]. Therefore the
entire area below the graph is

A(b)− A(a) .

If A is a primitive function of f , this is the same as the definite integral of
f from a to b.6 We must therefore show that A is a primitive function of f .6This follows from the definition of the def-

inite integral.
Since f is increasing, we have (see figure 3.6(a))

A(x +∆x)− A(x) ≥ f (x) ·∆x ,

and (see figure 3.6(b))

A(x +∆x)− A(x) ≤ f (x +∆x) ·∆x .

We can write this collectively as a double inequality:

f (x) ·∆x ≤ A(x +∆x)− A(x) ≤ f (x +∆x) ·∆x . (3.1)

If we divide by ∆x everywhere, we get

f (x) ≤ A(x +∆x)− A(x)

∆x
≤ f (x +∆x) . (3.2)

Now, we let ∆x → 0. Then

f (x) → f (x),

f (x +∆x) → f (x),



3.6 Areas Below Graphs 59

a x x +∆x b

f (x)
f (x +∆x)

f

x

y

(a) A(x +∆x)− A(x) ≥ f (x) ·∆x.

a x x +∆x b

f (x)
f (x +∆x)

f

x

y

(b) A(x +∆x)− A(x) ≤ f (x +∆x) ·∆x.

Figure 3.6: The marked area between the
graph and the x-axis is A(x +∆x)− A(x).
The two hatched areas f (x) ·∆x and f (x +
∆x)·∆x are less than resp. greater than this
area.

and

A(x +∆x)− A(x)

∆x
→ A′(x).

The inequality (3.2) then becomes

f (x) ≤ A′(x) ≤ f (x),

and we conclude that A′(x) = f (x). This means A is a primitive function,
and we have proven the theorem (for increasing functions).

If the function is decreasing, the proof is the same in essence. However,
the inequality signs in (3.1) and (3.2) will point in the opposite direction.

If the function is not monotonous, we can divide the x-axis into the
monotony intervals of f . In these intervals, the theorem applies, and it
must therefore be true for the entire interval because of theorem 3.21. �

Here, a few examples of how to calculate the area between a graph and
the x-axis are given:

Example 3.23
If we want to find the area between the graph of the function f (x) = 1p

x
and the x-axis in the interval [4;9], we calculate∫ 9

4

1p
x

dx =
[

2
p

x
]9

4
= 2 ·p9−2 ·p4 = 2 .

Therefore, the area (see figure 3.7) is 2.

1 4 9

1

f (x) = 1p
x

x

y

Figure 3.7: The area between the graph of f
and the x-axis in the interval [4;9] is 2.

Example 3.24
In figure 3.8, we see that the region M is bounded by the graph of the
function

f (x) = 3e−x − x

4

together with the x- and the y-axes. We can find the area of M by calculat-
ing a definte integral. But before we do that, we need to know the limits of
integration.
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The lower limit is 0, since the region begins at the y-axis. The upper limit
can be found where the graph intersects the x-axis. To find this value of x,
we need to solve the equation f (x) = 0, i.e.

3e−x − x

4
= 0 .

1

1
M

f (x) = 3e−x − x
4

x

y

Figure 3.8: A region M is bounded by the
graph of f (x) = 3e−x + x

4 and the coordi-
nate axes.

We cannot solve this equation analytically, so we need to use a CAS. We
then find the solution

x = 1.8628 .

Therefore, we need to integrate f (x) in the interval [0;1.8628].

This yields

∫ 1.8628

0

(
3e−x − x

4

)
dx =

[
−3e−x − x2

8

]1.8628

0

=
(
−3e−1.8628 − 1.86282

8

)
−

(
−3e−0 − 02

8

)
= 2.1005 .

So, the area of the region M is 2.1005.

If the Graph is Below the x-Axis

Theorem 3.22 can be used to calculate the area between a graph and the
x-axis, but only if the graph lies above the x-axis. What happens if the
graph lies below the x-axis?

Example 3.25
In figure 3.9, we see the region M bounded by the graph of f (x) =−2x −1
and the x-axis in the interval [1;3]. Here, we cannot use the definite
integral to calculate the area of M , since the graph of f lies below the
x-axis.

1 3

2

f (x) =−2x −1

M

x

y

Figure 3.9: The region M lies below the x-
axis. If we just calculate the definite integral anyway, we find

∫ 3

1
(−2x −1)dx =

[
−x2 −x

]3

1
= (−32 −3)− (−12 −1) =−10 ,

which cannot be an area, since an area is never negative.

But the function is linear, hence M is a trapezoid and we can calculate the
area geometrically. We find that the area is 10. So, we see that the definite
integral still gives us the area, albeit with a negative sign.

The conclusion from this example can be found to hold true in general.
The definite integral is the area between the graph and the x-axis with
sign. If the graph is above the x-axis, we get the area, but if it is below, we
find the negative area.
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3.7 AREAS BETWEEN GRAPHS

We can also use the definite integral to calculate areas between graphs. If
one graph lies completely above another, we can find the area between
them by subtracting the area beneath the lower graph from the area be-
neath the upper graph. We have the following theorem:

Theorem 3.26

Let two functions f and g be given such that f (x) ≥ g (x) ≥ 0 for all x
in the interval [a;b]. Then the area of the region between the graphs
of f and g in the interval [a;b] is∫ b

a
( f (x)− g (x))dx .

Proof
Since the graph of f lies above the graph of g everywhere, the area below
the graph of f is greater than the area below the graph of g , and the area
between the two graphs is∫ b

a
f (x)dx −

∫ b

a
g (x)dx ,

which, according to theorem 3.20, equals∫ b

a
( f (x)− g (x))dx . �

Example 3.27
In this example, we calculate the area between the graphs of

f (x) = x2

3
+6 and g (x) =−x2

2
+2x +3

in the interval [−1;2] (see figure 3.10).

In the figure, we see that the graph of f lies above the graph of g . The area
is then, according to theorem 3.26,∫ 2

−1
( f (x)− g (x))dx =

∫ 2

−1

((
x2

3
+6

)
−

(
−x2

2
+2x +3

))
dx

=
∫ 2

−1

(5
6 x2 −2x +3

)
dx

=
[

5
18 x3 −x2 +3x

]2

−1

= ( 5
18 ·23 −22 +3 ·2

)− ( 5
18 · (−1)3 − (−1)2 +3 · (−1)

)
= 17

2 .

−1 1 2

1

f

g

x

y

Figure 3.10: The area between the graphs of

f (x) = x2

3 +6 and g (x) =− x2

2 +2x+3 in the
interval [−1;2].Example 3.28

In figure 3.11, we see that a region M is bounded by the graphs of

f (x) = x2 +1 and g (x) =−x +3



62 Integral Calculus

The area of this region can be calculated as an integral, but in order to do
this, we need to know the limits of integration.

1

1

f

g

M

x

y

Figure 3.11: M is bounded by the graphs of
f (x) = x2 +1 and g (x) =−x +3.

We therefore need to find the values of x where the two graphs intersect.
We find these values by solving the equation f (x) = g (x):

x2 +1 =−x +3 ⇔ x2 +x −2 = 0 ⇔ x =−2 ∨ x = 1 .

So, we need to integrate over the interval [−2;1]. Since the graph of g lies
above the graph of f in this interval, we calculate∫ 1

−2
(g (x)− f (x))dx =

∫ 1

−2

(
(−x +3)− (x2 +1)

)
dx

=
∫ 1

−2
(−x2 −x +2)dx

=
[
−1

3 x3 − 1
2 x2 +2x

]1

−2

= (−1
3 ·13 − 1

2 ·12 +2 ·1
)

− (−1
3 · (−2)3 − 1

2 · (−2)2 +2 · (−2)
)

= 9
2 ,

and this is the area of the region M .

Theorem 3.26 only applies when both graphs lie above the x-axis. But it is,
in fact, only necessary that one graph lies above the other. A more general
version of theorem 3.26 is therefore

Theorem 3.29

Let f and g be two continuous functions such that f (x) ≥ g (x) for all
x in the interval [a;b]. Then the area between the graphs of f and g
in the interval [a;b] is ∫ b

a
( f (x)− g (x))dx .

Proof
If the graphs of both functions are above the x-axis, the theorem is the
same as theorem 3.26. If this is not the case, the graph of g will have a
minimum −M for some positive number M . The two functions

f1(x) = f (x)+M and g1(x) = g (x)+M ,

will therefore have graphs that are vertical shifts of f and g , and these
graphs are above the x-axis. Since the graphs of f1 and g1 are above the
x-axis, the area between them can be calculated using theorem 3.26, and
we get the area∫ b

a
( f1(x)− g1(x))dx =

∫ b

a

(
( f (x)+M)− (g (x)+M)

)
dx

=
∫ b

a
( f (x)− g (x))dx .
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But the area between the graphs of f1 and g1 must be the same as the area
between the graphs of f and g , since the two graphs have been shifted
vertically by the same quantity. Thus, the area between the graphs of f
and g is ∫ b

a
( f (x)− g (x))dx . �

Example 3.30
In this example, we calculate the area between the graphs of

f (x) = x +1 and g (x) = 2−x −3

in the interval [0;3] (see figure 3.12).

Since the graph of f lies above the graph of g , we calculate∫ 3

0
( f (x)− g (x))dx =

∫ 3

0

(
(x +1)− (2−x −3)

)
dx =

∫ 3

0
(−2−x +x +4)dx

to find the area.

This integral can be calculated by hand, but we can also use a CAS. We
then find the area to be∫ 3

0
(−2−x +x +4)dx = 15,24 .

f

g

x

y

1 3

1

Figure 3.12: The area between the graphs of
f (x) = x +1 and g (x) = 2−x −3.





4Probability Theory

Probability theory is a branch of mathematics, which tries to quantify
random phenomena. The first books on probability theory dealt with
different games of chance.[3]

Probability theory deals with outcomes and their probabilities. An outcome
is the result of an “experiment”. This might be

• the result of rolling a die,

• the winnings on lottery ticket, or

• the values of 5 random playing cards.

The probabilities are a description of how often a certain outcome of the
experiment happens. E.g. how often we get a 5 when we roll a die.

If we roll a die, the probability of getting a 5 is 1
6 , but what does that

actually mean? The interpretation is that if we roll the die a huge number
of times, about 1

6 of the rolls will gives us a 5. We find this probability
using the formula

probability = number of wanted outcomes

number of possible outcomes
. (4.1)

This formula only works in those cases where each outcome is equally
probable. If we want to simplify calculations involving probabilities, we
therefore want to describe the outcomes in such a way that they are all
equally probable.

To describe which outcomes are “wanted”, we describe the outcomes
using a so-called random variable. This is a quantity which assigns a
number to each outcome. The random variable might asign the number
1 to the wanted outcomes and 0 to the rest of the outcomes.1 1Because a random variable assigns a num-

ber to each outcome, it is not actually a
variable, but a function. However, this dis-
tinction is not important for our purposes.4.1 OUTCOMES, EVENTS, AND RANDOM VARIABLES

If we roll a die, there are 6 possible outcomes. These outcomes are shown
in table 4.1. The 6 outcomes are equally probable, and they make up the
sample space S, which is the set of all possible outcomes.

S = {1,2,3,4,5,6} .

65
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For each element s ∈ S in the sample space, there is an associated proba-
bility P (s), which is listed in table 4.1. The sum of all the probabilities is
1.

Table 4.1: Possible outcomes when rolling a
die.

s P (s)

1 1
6

2 1
6

3 1
6

4 1
6

5 1
6

6 1
6

Any subset of the sample space is called an event. So, an event is a collec-
tion of certain outcomes, which we happen to be looking at (correspond-
ing to the “wanted outcomes” in formula 4.1).

A few events are:

E1 = {6}

E2 = {1,2}

E3 = {1,3,5} .

The event E1 corresponds to rolling a 6, E2 corresponds to rolling a 1 or
a 2, while E3 corresponds to rolling an odd number. The three events
might be described by three random variables, X , Y , and Z , which assign
a number to the events, we are looking at (“6”, “1 or 2”, “odd number”).
The values of the three random variables might be chosen as in table 4.2.

Table 4.2: Outcomes of rolling a die, and the
values of the random variables X , Y and Z .

s P (s) X Y Z

1 1
6 1 2 1

2 1
6 2 2 2

3 1
6 3 −1 1

4 1
6 4 −1 2

5 1
6 5 −1 1

6 1
6 6 −1 2

We have chosen the values of the random variables, such that every out-
come, which is part of the corresponding event, has the same value. Apart
from that, we can chose the values completely at random, but we usually
choose them so that they describe the event to some extent.

The probability of an event E is denoted by P (E) or P (X = t), where t is
the value of X which makes up the event. By looking at the table, we see
that with the chosen values of the random variables, we have

P (E1) = P (X = 6) , P (E2) = P (Y = 2) and P (E3) = P (Z = 1) .

We calculate the probability of an event by adding the probabilities of the
outcomes, which make up the event:

P (X = 6) = P (6) = 1
6

P (Y = 2) = P (1)+P (2) = 1
6 + 1

6 = 1
3

P (Z = 1) = P (1)+P (3)+P (5) = 1
6 + 1

6 + 1
6 = 1

2 .

4.2 DISCRETE PROBABILITY DISTRIBUTIONS

The sample space and the random variables, we looked at in the previous
sections, are examples of what we call discrete probability distributions.
We talk about discrete distributions when the outcomes are separate and
countable. Here, the methods we use are basically the same as when we
look at ungrouped data in statistics. The probabilities P (X = t) can be
interpreted as relative frequencies.

As mentioned previously, when we want to calculate the probability of an
event, it is easier if we choose the sample space, so that every outcome is
equally probable.

If we toss a coin 3 times and count the number of “heads”, then we have 4
possible outcomes for the number of “heads”: 0, 1, 2 or 3 times. But these
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T

T
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Figure 4.1: If we toss a coin 3 times, there
are 8 possible outcomes. The outcomes,
which have 2 “heads”, are marked.

outcomes are not equally probable, and we might therefore consider them
to be events rather than outcomes.

We instead define the outcomes to be the actual results of the tosses, i.e.
combinations of “heads” and “tails”:

TTT, TTH, THH, etc.

If we look at the number of “heads” in 3 tosses of a coin, then three
possible outcomes will have 2 “heads”. The event, which is made up of
these three outcomes is

E = {HHT,HTH,THH} .

To analyse all the possible outcomes, we can draw a so-called tree, see
figure 4.1. Here, we can see that there are 8 possible outcomes, which are
equally probable, and that the event E contains 3 elements.

To calculate the probabilities, we list all 8 possible outcomes in a table, and
let the random variable X count the number of “heads” in the outcomes
(see table 4.3).

Table 4.3: The value of the random variable
X for all possible outcomes of 3 coin tosses.

s X (s)

TTT 0

TTH 1

THT 1

THH 2

HTT 1

HTH 2

HHT 2

HHH 3

We see in the table, that X = 2 in 3 places, i.e.

P (X = 2) = 3 · 1
8 = 3

8 .

The total probability distribution for the number of “heads” in 3 coin
tosses can be seen in table 4.4.

Table 4.4: The probability distribution of X .

t P (X = t )

0 1
8

1 3
8

2 3
8

3 1
8

Another way of presenting the probability distribution is in a bar chart. A
bar chart for the distribution in table 4.4 can be seen in figure 4.2.

0 1 2 3

0.1

0.2

0.3

0.4

t

P (X = t )

Figure 4.2: The probability distribution of
X as a bar chart.

Here, we provide a few examples of how to find the probability distribution
of different discrete random variables.

Example 4.1
If a sample space S = {s1, s2, s3, s4} has the associated probabilities seen in
table 4.5, and we also have a random variable X , whose values are as in
the table, we can find the probability distribution in the following way.

The random variable has three possible values, −1, 0 and 2. The probabili-
ties of these are calculated by adding the probabilities of the outcomes,
which represent these values:

P (X =−1) = P (s1)+P (s3) = 0.2+0.3 = 0.5
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P (X = 0) = P (s2) = 0.4

P (X = 2) = P (s4) = 0.1 .

These three values describe the probability distribution of the random
variable X .

Table 4.5: A series of outcomes with corre-
sponding probabilities, and a random vari-
able X .

s P (s) X

s1 0.2 −1

s2 0.4 0

s3 0.3 −1

s4 0.1 2

Example 4.2
If we roll two dice, the sample space S consists of pairs (d1,d2), where d1

is the roll of the first die, and d2 is the roll of the second. In total, there are
36 such pairs, so the sample space has 36 elements:

S = {
(1,1) , (1,2) , (1,3) , (1,4) , (1,5) , (1,6),

(2,1) , (2,2) , (2,3) , (2,4) , (2,5) , (2,6) ,

(3,1) , (3,2) , (3,3) , (3,4) , (3,5) , (3,6) ,

(4,1) , (4,2) , (4,3) , (4,4) , (4,5) , (4,6) ,

(5,1) , (5,2) , (5,3) , (5,4) , (5,5) , (5,6) ,

(6,1) , (6,2) , (6,3) , (6,4) , (6,5) , (6,6)
}

All of these outcomes are equally probable, i.e. the probability of one of
the outcomes is 1

36 .

We now define the random variable X to be the sum of the two rolls. The
possible values of X are then the numbers from 2 to 12, but these values
are not equally probable. As we see from table 4.6, some of the values
occur more often than others.

Table 4.6: X : the result of rolling two dice.

1 2 3 4 5 6

1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9

4 5 6 7 8 9 10

5 6 7 8 9 10 11

6 7 8 9 10 11 12

If we want to know the probability of rolling a 9 with two dice, we count
the number of 9s in table 4.6 and multiply by 1

36 :

P (X = 9) = 4 · 1

36
= 1

9
.

The probability distribution of X can be seen in table 4.7.

Table 4.7: The probability distribution of
the roll of two dice.

t P (X = t )

2 1
36

3 1
18

4 1
12

5 1
9

6 5
36

7 1
6

8 5
36

9 1
9

10 1
12

11 1
18

12 1
36

Mean and Standard Deviation

The probability distributions of random variables show, how probable it
is to get certain results of an experiment. The probabilities can be treated
in exactly the same way as relative frequencies in statistics. This means
we can describe the probability distribution via certain descriptors.

We have the following definition:

Definition 4.3

Let X be a discrete random variable with possible values x1, . . . , xn ,
and let pi = P (X = xi ).

We then define the mean µX and the standard deviation σX of X to
be the numbers

µX = x1 ·p1 +·· ·+xn ·pn

σX =
√

(x1 −µX )2 ·p1 +·· ·+ (xn −µX )2 ·pn
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The mean shows us, which value we should expect to get on average, if we
perform the experiment a large number of times. The standard deviation
shows, how far the results are on average from the mean.

Example 4.4
If we look at the number of “heads” in 3 coin tosses, then the probability
distribution is given in table 4.4.

The mean can then be calculated using the tabulated values:

µX = 0 ·P (X = 0)+1 ·P (X = 1)+2 ·P (X = 2)+3 ·P (X = 3)

= 0 · 1

8
+1 · 3

8
+2 · 3

8
+3 · 1

8
= 1.5 .

This is the number of “heads”, we would expect to get in 3 coin tosses. Of
course, it is not possible to get 1.5 “heads”, the number 1.5 means that on
average we will get 1.5 “heads” in 3 tosses.

Example 4.5
In the previous example, we calculated the mean of the number of “heads”
in 3 coin tosses to be 1.5.

We now calculate the standard deviation σX :

σX =
√

(0−1.5)2 · 1

8
+ (1−1.5)2 · 3

8
+ (2−1.5)2 · 3

8
+ (3−1.5)2 · 1

8

=p
0.75

= 0.866 .

This is a measure of how far the values of X are on average from the mean
1.5.

4.3 CONTINUOUS PROBABILITY DISTRIBUTIONS

The methods we use to describe discrete probability distributions are the
same as the ones we use when doing statistics with ungrouped data. Just
as we separated statistics into ungrouped and grouped data, we have two
possibilities for probability distributions.

When doing statistics with grouped data, the observations are grouped
in intervals with a corresponding relative frequency, which we can use
to draw a histogram. The histogram provides an illustration of the entire
data set, and the area of the histogram is always 1 (or 100%).

In probability theory, we instead talk about continuous probability distri-
butions. Here, we know the distribution of probabilities so well that the
intervals are infinitely small. Instead of a histogram, we then get a smooth
curve. The area beneath this curve is 1 (see figure 4.3).

−2 2 4 6 8
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0.3
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y

Figure 4.3: The graph of a probability den-
sity function. The area beneath the graph
is 1.

The function, which is graphed in figure 4.3 is called the probability density
function of the probability distribution.

When we talk about continuous distributions, it makes no sense to talk
about the probability of getting a certain value. We instead talk about the
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probability of getting a value in some interval. We calculate this proba-
bility as the area beneath the graph of the probability density function
between the start and end point of the interval.2 I.e. we calculate the prob-2This is exactly how we use histograms

when doing statistics with grouped data. ability of the random variable X assuming values in the interval [t1; t2]
as

P (t1 ≤ X ≤ t2) =
∫ t2

t1

fX (x)dx ,

where fX is the probability density function of the random variable X .

So, a continuous random variable is a quantity which assumes values
in some interval. The probability distribution of a continuous random
variable X can then be calculated using the corresponding probability
density function fX (x).

Example 4.6
The probability density function of a random variable X is given by

fX (x) = ex−3

(ex−3 +1)2 .

This is the probability density function, which is graphed in figure 4.3.

The probability that the random variable assumes values in the interval
[1;2] is then ∫ 2

1
fX (x)dx =

∫ 2

1

ex−3

(ex−3 +1)2 dx = 0.1497 .

I.e.

P (1 ≤ X ≤ 2) = 0.1497 .

This probability corresponds to the marked area in figure 4.4.
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Figure 4.4: The probability P (1 ≤ X ≤ 2)
corresponds to the marked area below the
graph of the probability density function.

Example 4.7
A random variable Y has the probability density function

fY (x) =
{

2
125 x3 − 21

125 x2 + 11
25 x for 0 ≤ x ≤ 5

0 otherwise
.

This function has the value 0 outside of the interval [0;5], which means
that the probability of getting values outside this interval is 0.

If we want to calculate the probability of the random variable assuming
values in the interval [2;3], we calculate∫ 3

2
fY (x)dx =

∫ 3

2

( 2
125 x3 − 21

125 x2 + 11
25 x

)
dx = 37

125
.

I.e.

P (2 ≤ Y ≤ 3) = 37

125
= 0.296 .

This probability corresponds to the area marked in figure 4.5.
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Figure 4.5: The probablity P (2 ≤ Y ≤ 3) is
equal to the marked area below the graph
of the probability density function.



4.3 Continuous Probability Distributions 71

Cumulative Distribution Functions

Having to integrate the probability density function, every time we want to
calculate a probability can get somewhat tiresome. Therefore, we would
like to do the integration once and for all, and so we define the cumulative
distribution function, FX :

Definition 4.8

If the random variable X has the probability density function fX , we
define the cumulative distribution function

FX (t ) = P (X ≤ t ) =
∫ t

−∞
fX (x)dx .

The cumulative distribution function gives us the area below the graph
of the probability density function up to the value t . The graph of the
cumulative density function is therefore a graph where the values increase
from 0 to 1, see figure 4.6.

The graph of the cumulative distrution function is actually an ogive just
like the ones we drew when we looked at statistics with grouped data. So,
the function values of FX correspond to cumulative relative frequencies.
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Figure 4.6: The graph of a cumulative distri-
bution function. Notice, how the function
values increase from 0 to 1.

We can use the cumulative distribution function to calculate probabilities.
We have the following theorem:

Theorem 4.9

If the random variable X has the cumulative distribution function
FX , then

1. P (X ≤ t ) = FX (t ),

2. P (X ≥ t ) = 1−FX (t ), and

3. P (t1 ≤ X ≤ t2) = FX (t2)−FX (t1).

Proof
1 follows from the definition of the cumulative distribution function.

2 holds, because

P (X ≥ t ) = 1−P (X ≤ t ) = 1−FX (t ) .

To prove 3, we calculate

P (t1 ≤ X ≤ t2) =
∫ t2

t1

fX (x)dx

=
∫ t2

t1

fX (x)dx +
∫ t1

−∞
fX (x)dx −

∫ t1

−∞
fX (x)dx

=
∫ t2

−∞
fX (x)dx −

∫ t1

−∞
fX (x)dx

= FX (t2)−FX (t1) . �
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Example 4.10
We can calculate the probability P (1 ≤ X ≤ 2) from example 4.6 using the
cumulative distribution function.

The probability density function is

fX (x) = ex−3

(ex−3 +1)2 .

So, the cumulative distribution function is

FX (t ) =
∫ t

−∞
fX (x)dx =

∫ t

−∞
ex−3

(ex−3 +1)2 dx = 1

e3−t +1
.

I.e.

P (1 ≤ X ≤ 2) = FX (2)−FX (1) = 1

e3−2 +1
− 1

e3−1 +1
= 0.1497 ,

which is just what we found previously.

We can also find the function values FX (2) og FX (1) on the graph, see
figure 4.7.
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Figure 4.7: The probability P (1 ≤ X ≤ 2) =
FX (2)−FX (1).

Example 4.11
The probability P (2 ≤ X ≤ 3) from example 4.7 can also be found by first
determining the cumulative distribution function.

The probability density function is

fY (x) =
{

2
125 x3 − 21

125 x2 + 11
25 x for 0 ≤ x ≤ 5

0 otherwise
.

Since this function only has non-zero values in the interval [0;5], the
cumulative distribution function will yield 0 for t < 0 and 1 for t > 5.

In the interval [0;5], the cumulative distribution function is

FY (t ) =
∫ t

−∞
fY (x)dx =

∫ t

0

( 2
125 x3 − 21

125 x2 + 11
25 x

)
dx

= 1
250 t 4 − 7

125 t 3 + 11
50 t 2 .

In total, the cumulative distribution function is

FY (t ) =


0 for t < 0

1
250 t 4 − 7

125 t 3 + 11
50 t 2 for 0 ≤ t ≤ 5

1 for t > 5

.

This function is graphed in figure 4.8.

We can now calculate the probability P (2 ≤ Y ≤ 3):

P (2 ≤ Y ≤ 3) = FY (3)−FY (2) = 99

125
− 62

125
= 37

125
,

which is the same value as in example 4.7.

The two function values FY (2) and FY (3) can be seen in figure 4.8.
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Figure 4.8: The graph of FY . P (2 ≤ Y ≤ 3) =
FY (3)−FY (2).
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Mean and Standard Deviation

We can also describe continuous probability distributions using certain
descriptors. As for discrete distributions, we have the mean and standard
deviation. These are calculated using the probability density function.

Definition 4.12

Let X be a continuous random variable, and let fX be the probability
density function of X .

The mean µX and standard deviation σX of X are then

µX =
∫ ∞

−∞
x · fX (x)dx

σX =
√∫ ∞

−∞
(x −µX )2 · fX (x)dx

Because these integrals are sometimes quite difficult to calculate, we
normally use a CAS to calculate them.

1 5

0.1

0.2

µX = 3

σX σX
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y

Figure 4.9: The graph of fX (the probability
density function). The mean µX and the
standard deviation σX are shown on the
graph.

Example 4.13
In example 4.6, we looked at a random variable with probability density
function

fX (x) = ex−3

(ex−3 +1)2 .

The mean is then

µX =
∫ ∞

−∞
x · fX (x)dx =

∫ ∞

−∞
x · ex−3

(ex−3 +1)2 dx = 3 ,

and the standard deviation is

σX =
√∫ ∞

−∞
(x −µX )2 fX (x)dx

=
√∫ ∞

−∞
(x −3)2 · ex−3

(ex−3 +1)2 dx

= πp
3
≈ 3.29 .

The mean and the standard deviation are shown on the graph of the
probability density function in figure 4.9.

Example 4.14
The random variable from example 4.7 has the probability density func-
tion

fY (x) =
{

2
125 x3 − 21

125 x2 + 11
25 x for 0 ≤ x ≤ 5

0 otherwise
.

We can now calculate the mean using this function. When we calculate
the integral, we need to remember that the probability density function
only has non-zero values in the interval [0;5], i.e.

µY =
∫ ∞

−∞
x · fY (x)dx =

∫ 5

0
x · ( 2

125 x3 − 21
125 x2 + 11

25 x
)

dx = 25

12
≈ 2.08 .
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The graph of the probability density function with the mean µY marked is
shown in figure 4.10.
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Figure 4.10: The graph of fY , and the mean
µY .

Example 4.15
The standard deviation of the random variable from example4.7 can be
found using the mean µY = 25

12 .

The standard deviation is

σY =
√∫ ∞

−∞
(
x − 25

12

)2 · fY (x)dx

=
√∫ 5

0

(
x − 25

12

)2 · ( 2
125 x3 − 21

125 x2 + 11
25 x

)
dx

=
√

155

144

=
p

155

12
≈ 1.037 .
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The binomial distribution is a probability distribution used to calculate
the probability of a certain number of successes in a number of repeated
experiments. For example if we look at the probability of getting three 6s
in five rolls of a die.

In this case, we start with an experiment called the binomial trial, which
we perform a number of times. Every time we do the experiment, there is
a probability of success p, and a probability of failure 1−p.1 1If the experiment is not a success, it is a

failure. Hence the probability of success
and the probability of failure must add up
to 1.

In the example above, the binomial trial is the roll of a die. We perform
this experiment five times. The probability of success (i.e. a 6) is 1

6 . The
probability of failure is then 1− 1

6 = 5
6 , which is the probability of getting

anything but a 6.

Getting three 6s in the five rolls can happen in several ways. The first three
rolls might be 6s—or the last three. So, getting three 6s can happen in
quite a lot of different ways.

Therefore, to be able to calculate the probability of three 6s in five rolls,
we first need to know, in how many ways it can happen.

5.1 THE BINOMIAL COEFFICIENT

The binomial coefficient is a number, which tells us in how many ways it
is possible to choose a certain number out of a larger set, e.g. how many
ways to choose 3 out of 5.

We want to find a formula for the binomial coefficient, but first we need
some notation, which will make the formulas easier to read.

Definition 5.1

If n is a natural number larger than 0, we define n! as

n! = n · (n −1) · (n −2) · · ·2 ·1 .

0! is defined to be 0! = 1.
The number n! is called “n factorial”.

75
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Example 5.2
The number 6! is

6! = 6 ·5 ·4 ·3 ·2 ·1 = 720 .

As we see from this, n! can be quite a large number, even for small values
of n.

Choosing 3 from 5 is a manageable problem, we can actually just count
how many different combinations there are. If we want to choose three
letters out of ABCDE, we can do it in the ways listed in table 5.1. So, there
are 10 ways of choosing 3 out of 5.

Table 5.1: The different ways of choosing 3
letters from ABCDE.

ABC ACD BCD CDE

ABD ACE BCE

ABE ADE BDE
We can also arrive at this number by calculation. We can choose the first
letter in 5 different ways, the next letter in 4 ways, and the last in 3 ways.
This gives us

5 ·4 ·3 = 60

different ways of choosing the three letters. This is a lot more than in the
table, so clearly we are missing something. What we forgot to consider, is
the fact that choosing ABC is no different from choosing CBA, since these
are the same three letters. We can arrange three letters in

3 ·2 ·1 = 6

different ways, so the 60 ways we just calculated actually fall in groups of
6 equal choices. Therefore, we actually only have

60

6
= 10

ways of choosing 3 out of 5. Luckily, this is the same number we found by
counting.

So, to find out in how many ways we can choose 3 out of 5, we calculate

5 ·4 ·3

3 ·2 ·1
= 10 ,

which we can rewrite to get

5 ·4 ·3

3 ·2 ·1
= 5 ·4 ·3 ·2 ·1

3 ·2 ·1 ·2 ·1
= 5!

3! ·2!
= 5!

3! · (5−3)!
.

This calculation tells us in how many ways we can choose 3 out of 5. From
this we can extrapolate a general formula.

Definition 5.3: The binomial coefficient

The binomial coefficient Cr
n tells us in how many ways we can choose

r out of n. The number Cr
n is

Cr
n = n!

r ! · (n − r )!
.

Example 5.4
A deck of playing cards contains 52 cards. If we want to choose 5 of these,
we can do that in

C5
52 =

52!

5! · (52−5)!
= 52!

5! ·47!
= 2598960

different ways.
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5.2 THE BINOMIAL DISTRIBUTION

We found in the previous section that we can choose 3 out of 5 in 10
different ways, i.e. C3

5 = 10. If we want to calculate the probability of three
6s in five rolls of a die, we now know that we can get the three 6s in 10
different ways.

One of these is getting three 6s in the first three rolls. The probability of
getting a 6 in one roll of a die is 1

6 . We now want this to happen for the
first three rolls, and we want to not get a 6 in the fourth and the fifth roll.
The probability of not getting a 6 is 5

6 . The total probability of first getting
three 6s and then two of something else is

The first three︷ ︸︸ ︷
1

6
· 1

6
· 1

6
·

The last two︷ ︸︸ ︷
5

6
· 5

6
=

(
1

6

)3

·
(

5

6

)2

.

All the ways in which we might get three 6s have to be equally probable. So,
if we are interested in knowing the probability of three 6s in five rolls (and
not just three 6s in the first three rolls), we need to multiply the probability
we just found by the number of ways, we can get three 6s. Therefore the
probability is

10 ·
(

1

6

)3

·
(

5

6

)2

= 125

3888
≈ 0.0322 . (5.1)

The calculation (5.1) can also be written as

C3
5 ·

(
1

6

)3

·
(
1− 1

6

)5−3

. (5.2)

Here, we have shown more clearly, where the numbers 10 and 5
6 come

from. And this calculation only uses the original numbers, i.e. the number
of 6s (3), the number of rolls (5), and the probability of getting a 6 in one
roll ( 1

6 ).

The General Formula

We want to find a general formula for the binomial distribution, and we
define a random variable X , which counts the number of successes in n
trials. For each repeated trial, the probability of success is p.

So, X is binomially distributed with the number of trials n and probabil-
ity of success p. The probability of r successes, P (X = r ), can then be
calculated using the following formula, which is a generalisation of the
calculation in (5.2).

Theorem 5.5

If the random variable X is binomially distributed with number of tri-
als n and probability of success p, then the probability of r successes
is

P (X = r ) = Cr
n ·pr · (1−p)n−r .
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Example 5.6
What is the probability of getting exactly four 1s in 15 rolls of a die?

The random variable, which counts the number of 1s in the 15 rolls, is bi-
nomially distributed with the number of trials n = 15, and the probability
of success p = 1

6 . The probability of getting four 1s is therefore

P (X = 4) = C4
15 ·

(
1

6

)4

·
(
1− 1

6

)15−4

= 1365 ·
(

1

6

)4

·
(

5

6

)11

= 0.1418 .

So, there is a probability of 14.18% to get exactly four 1s in 15 rolls of a die.

Table 5.2: The probability of r floodings in
a 5-year period.

r P (X = r )

0 0.2373

1 0.3955

2 0.2637

3 0.0879

4 0.0146

5 0.0010

0 1 2 3 4 5

0.1

0.2

0.3

0.4

t

P (X = t )

Figure 5.1: The probability distribution of X :
The number of floodings in a 5-year period.

Example 5.7
A small tropical island in the Pacific is flooded during the summer on
average every 4 years. So, the probability of the island flooding during a
single summer is 1

4 .

The random variable, which counts the number of floodings in a 5-year
period, is binomially distributed with number of trials n = 5 and probabil-
ity of success 1

4 . In a 5-year period, the island may be flooded anywhere
between 0 and 5 times. The probability distribution can the be found by
calculating P (X = 0), P (X = 1), . . . , P (X = 5).

E.g.

P (X = 3) = C3
5 ·

(
1

4

)3

·
(

3

4

)2

= 0.0879 .

This is the probability of the island flooding 3 times during a 5-year pe-
riod. The total distribution is listed in table 5.2. A bar chart is shown in
figure 5.1.

The table and the figure tells us that the most probable event is one
flooding during the 5 years. We can also see that the probability of no
floodings is quite large, but a flooding in every one of the 5 years is very
improbable (probability 0.0010 = 0.10%).

If we want to find the probability of no more than one flooding in 5 years,
we calculate

P (X ≤ 1) = P (X = 0)+P (X = 1) = 0.2373+0.3955 = 0.6328 .

So, it is quite probable that we will have no more than one flooding during
the 5 years. But, we also have a probability of

P (X > 1) = 1−P (X ≤ 1) = 1−0.6328 = 0.3672

for more than 1 flooding during the 5 years.

5.3 MEAN AND STANDARD DEVIATION

The mean and the standard deviation of a binomially distributed random
variable can be found using these formulas, which we do not prove:
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Theorem 5.8

If the random variable X is binomially distributed with number of
trials n and probability of success p, then

µX = np

σX =√
np(1−p) .

Example 5.9
If we roll a die 10 times and count the number of 5s, then the random
variable representing the number of 5s is binomially distributed with
number of trials n = 10 and probability of success p = 1

6 .

The mean is then

µX = n ·p = 10 · 1

6
≈ 1.667 .

So, if we roll a die 10 times, we will get 1.667 5s on average.

The standard deviation is

σX =√
np(1−p) =

√
10 · 1

6
·
(
1− 1

6

)
= 1.179 .

Example 5.10
In examples 5.7, we looked at a random variable, where the number of
trials was 5, and the probability of success was 1

4 .

Here, the mean is

µX = n ·p = 5 · 1

4
= 1.25 ,

and the standard deviation is

σX =√
np(1−p) =

√
5 · 1

4
·
(
1− 1

4

)
= 0.9682 .
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A lot of statistical measurements can be described by the probability dis-
trubtion called the normal distribution. An example could be something
like the thickness of bread sliced using a machine.

No machine slices perfectly. Table 6.1 lists measurements for a machine,
which is supposed to slice bread into 1 cm slices. Some of the slices are
too thick, and some are too thin; but it would seem that most of the slices
have a thickness around 1 cm.

Table 6.1: The thickness of 100 slices of
bread.

Thickness (cm) Frequency

0.55–0.65 2

0.65–0.75 4

0.75–0.85 6

0.85–0.95 9

0.95–1.05 14

1.05–1.15 16

1.15–1.25 15

1.25–1.35 10

1.35–1.45 10

1.45–1.55 8

1.55–1.65 6

Using the table, we can find the mean µ and the standard deviation σ of
the thickness of the slices. We get

µ= 1.151 and σ= 0.248 .

In figure 6.1, we have drawn a histogram of the distribution from table 6.1.
In the figure, we have also drawn the graph of the probability density func-
tion of the normal distribution with mean 1.151 and standard deviation
0.248. The graph of the probability density function is a bell-shaped curve,
which seems to fit the distribution of the thickness of the slices quite well.
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Figure 6.1: Histogram of the thickness of the
slices.

The probability density function of the normal distribution is given by
this definition:

Definition 6.1

The normal distribution with mean µ and standard deviation σ has
the probability density function

fnorm(x;µ,σ) = 1

σ
p

2π
e−

(x−µ)2

2σ2 .

The corresponding cumulative distribution funcion is

Fnorm(t ;µ,σ) =
∫ t

−∞
fnorm(x;µ,σ)dx .

A lot of phenomena result in normally distributed data. Some of them are

• Experimental measurement errors.
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(a) Different mean.
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(b) Different standard deviation.

Figure 6.2: If the probability density func-
tions have the same standard deviation,
but different means, the graphs are shifted
horizontally. If they have the same mean,
but different standard deviations, then the
curves have different widths.

• The size of anything produced using a machine (like the thickness
of the slices of bread).

• Biological variables such as height and weight.11A lot of biological variables are actually
only approximately normally distributed.
In reality they are often log-normally dis-
tributed.[4].

The mean and the standard deviation change the shape of the curve. If we
change the mean, the curve shifts horizontally. If the standard deviation
decreases, the curve gets narrower; and if the standard deviation increases,
the curve widens (see figure 6.2).

Since a normally distributed random variable is a continuous random
variable, we can find the probability of measurements in a certain interval
by calculating the area below the graph of the probability density function.

Example 6.2
In a factory, a machine fills 1 kg bags of sugar. The weight of the bags
is normally distributed with mean µ = 1000 g and standard deviation
σ= 25 g. The probability density function is then

fnorm(x;1000,25) = 1p
2π ·25

·e−
(x−1000)2

2·252 .

If we want to calculate probabilities, it is, however, easier to use the cumu-
lative distribution function. The probability of a bag weighing between
950 and 975 g can then be found:

P (950 ≤ X ≤ 975) = Fnorm(975;1000,25)−Fnorm(950;1000,25)

= 0.1359 = 13.59% .

So, it is actually quite probable to get a bag, which weighs a little below 1
kg.

The graph of the probability density function of the normal distribution is
symmetric around the mean. Actually the probability density function is
so nicely behaved that we find (we will not prove this theorem):
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µ−3σ µ−2σ µ−σ µ µ+σ µ+2σ µ+3σ

68,27%

13,59% 13,59%
2,14% 2,14%

Figure 6.3: For a normally distributed ran-
dom variable, the probability of X being
in a symmetric interval of 1 standard de-
viation to each side of the mean is a fixed
number. The same applies to an interval
of 2 standard deviations to each side of the
mean, etc.

Theorem 6.3

If X is a normally distributed random variable with mean µ and
standard deviation σ, then

P (µ−σ≤ X ≤µ+σ) = 0.6827

P (µ−2σ≤ X ≤µ+2σ) = 0.9545

P (µ−3σ≤ X ≤µ+3σ) = 0.9973 .

This theorem tells us that 68.27% of the measurements will be in an inter-
val which covers 1 standard deviation to each side of the mean, 95.45%
will be in an interval covering 2 standard deviations to each side of the
mean, etc. This is illustrated in figure 6.3.

Example 6.4
Here, we take a further look at our previous concerning the slices of bread.
The random variable, which measured the thickness of the slices, turned
out to be normally distributed with mean µ= 1.151 and standard devia-
tion σ= 0.248.

Now that we know this, we can answer questions like

1. What is the probability of getting a slice of bread with a thickness
between 0.9 cm and 1 cm?

2. What is the probability of getting a slice with a thickness of more
than 1.3 cm?

We can find both answers by using the cumulative distribution function

Fnorm(t ;1.151,0.248)

to calculate the area below the graph of the probability density function.
The probability of getting a slice with a thickness between 0.9 cm and 1
cm is then

P (0.9 ≤ X ≤ 1) = Fnorm(1;1.151,0.248)−Fnorm(0.9;1.151,0.248)

= 0.1156 .

The probability of getting a slice of bread, which is more than 1.3 cm thick
is

P (X ≥ 1.3) = 1−P (X ≤ 1.3) = 1−Fnorm(1.3;1.151,0.248) = 0.2740 .

The areas representing these two probabilities are shown in figure 6.4.
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(a) P (0.9 ≤ X ≤ 1) = 0.1156.
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(b) P (X ≥ 1.3) = 0.2740.

Figure 6.4: The probability that the thick-
ness of the slices lie in certain intervals is
given by the area below the graph of the
probability density function.





7Hypothesis Tests

In this chapter, we will describe two methods for testing a hypothesis
based on a random sample. Both tests use the probability distribution
called the χ2-distribution.1 1The symbol χ is the greek letter chi (pro-

nounced “ki”).

7.1 STATISTICAL TESTS

A candy company producing a certain kind of jelly beans writes on their
website that the colour distribution of their jelly beans is: 20% red, 30%
yellow and 50% green.

If we want to test this claim, the obvious thing to do is to take a random
sample. So, we buy a large bag of 100 jelly beans and look at the colour
distribution. The colour distribution in our sample is listed in table 7.1.

In the table, we have also listed the expected values, i.e. how many jelly
beans of each colour, we would expect to find in the bag. The expected
values are calculated simply by taking 20%, 30% and 50% of the 100 jelly
beans—because we expect to find a distribution which corresponds ex-
actly to the company’s claim.

But in reality, we cannot determine based on just one sample, if the com-
pany’s claim is true. Because the company produces a huge amount of
jelly bean bags, we might find several bags where the distribution is not
exactly 20%-30%-50%.

Table 7.1: The distribution in a bag with 100
jelly beans.

Colour Number Expected

Red 16 20

Yellow 40 30

Green 44 50

On the other hand, it is quite unlikely to find a bag where almost every
jelly bean is red. If our sample had contained 98 red jelly beans, we might
conclude that the company’s claim is untrue. But the questions is then,
how far from the expected distribution must our sample be, before we
reject the company’s claim?

To quantify this, we first need to find out what we mean by “far”. We
therefore calculate the so-called χ2-statistic:
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Definition 7.1

The difference between the observed distibution o1, . . . ,on and the
expected distribution e1, . . . ,en is measured by the χ2-statistic:

χ2 = (o1 −e1)2

e1
+ (o2 −e2)2

e2
+·· ·+ (on −en)2

en
.

The number n in the definition is the number of categories. In our case
n = 3, because there are 3 different colours of jelly beans. So, in our
example we add 3 fractions to calculate the χ2-statistic:

χ2 = (16−20)2

20
+ (40−30)2

30
+ (44−50)2

50
= 4.85 .

7.2 THE DISTRIBUTION OF THE χ2-STATISTIC

Before we can determine if this value of χ2 is large or small, we need
to know what to expect from a random sample, if the claim is true. To
determine what we can expect, we can do a computer simulation of
random samples. We simulate what random samples would be if the
company’s claim is actually true.

For each simulated sample, we get a new χ2-statistic. The one χ2-statistic,
we found from our real sample cannot tell us, what to expect—but if we
simulate a large amount of samples, we might get an idea.

In table 7.2, we have listed how the χ2-statistics are distributed for 30,
100 and 1000 different simulated samples. As we see from the table, a
lot of samples have small values of the χ2-statistic, but a few have larger
values—this shows us that even though most of the samples will be close
to the expected values, a few of them will be quite different. This happens
because we take random samples.

Table 7.2: The distribution of χ2 in 30, 100
and 1000 simulated samples. Values above
10 are omitted from the table.

Number of samples

χ2 30 100 1000

[0;1[ 10 43 376

[1;2[ 11 31 267

[2;3[ 2 11 137

[3;4[ 3 7 81

[4;5[ 3 5 68

[5;6[ 1 2 32

[6;7[ 0 0 17

[7;8[ 0 0 8

[8;9[ 0 0 4

[9;10[ 0 0 3

We might get a better idea of what the distribution looks like if we illustrate
the data. In figure 7.1, we see three histograms based on table 7.2. The
histograms are scaled, so that the area of a column corresponds to the
relative frequency of the interval.

Looking at the figure, we see how the distribution of the χ2-statistic ap-
proaches a certain distribution when the number of samples increases. If
we repeated the simulation, we would not get the exact same numbers

2 4 6 8

0.2

0.4

Q

(a) 30 samples.

2 4 6 8

0.2

0.4

Q

(b) 100 samples.

2 4 6 8

0.2

0.4
fχ2 (x;2)

Q

(c) 1000 samples.

Figure 7.1: The simulated distribution of the
χ2-statistic for 30, 100 and 1000 random
samples.
In the last figure, the graph of the probabil-
ity density function of the χ2-distribution
with 2 degrees of freedom is included.
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as those in table 7.1; but for a large number of samples, the shape of the
histogram would look just like the one in figure 7.1(c).

It is possible to calculate how the χ2-statistics will be distributed for a
large number of samples. In figure 7.1(c), we have added a curve, which
follows this theoretical distribution. As we can see, this curve is consistent
with the histogram.

So, the curve in figure 7.1(c) shows how the χ2-statistics are distributed for
a very large number of samples (if the original distribution of jelly bean
colours is as the company claims).

The curve is the graph of the probability density function of a certain
probability distribution: The χ2-distribution with 2 degress of freedom.
How the χ2-statistics are distributed depends on the number of categories.
It is this we describe by the degrees of freedom, which is

d f = number of categories−1 .

In the jelly bean example, d f = 2 because there are 3 different colours.2 2There are 2 degrees of freedom because
if we know that there are 100 jelly beans,
we only need to know 2 of the numbers in
table 7.1 to know them all.

The probability density function of the χ2-distribution with n degrees of
freedom is called fχ2 (x;n). In figure 7.2, we see the graphs of the probabil-
ity density functions with d f = 1, . . . ,5.
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fχ2 (x;2)
fχ2 (x;3)
fχ2 (x;4)
fχ2 (x;5)

Figure 7.2: χ2-distributions with 1, 2, 3, 4
and 5 degrees of freedom.

7.3 GOODNESS OF FIT

The χ2-distribution is the basis of a statistical test called goodness of fit,
first described in an article by Karl Pearson in 1900.[5]

The idea behind the goodness-of-fit test is that if we know the distribution
of N variables, then the χ2-statistic for an infinite amount of samples will
be distributed according to fχ2 (x; N −1).

In the previous example with the jelly beans, we found that the χ2-statistic
has the value 4.85. If the company’s claim is correct, then all of the possible
samples have χ2-statistics distributed according to fχ2 (x;2). We can use
this to calculate the probability of a random sample having a χ2-statistic
with this value or more if the company’s claim is true. We calculate this
probability using the cumulative distribution function:

P (χ2 ≥ 4.85) = 1−P (χ2 < 4.85) = 1−Fχ2 (4.85;2).

The function Fχ2 (x;n) is usually quite complicated, but fortunately we
can just use a CAS to calculate

P (χ2 ≥ 4.85) = 1−P (χ2 < 4.85) = 1−Fχ2 (4.85;2) = 0.088 = 8.8% .

So, if the company’s claim is true, then there is a probability of 8.8% to get
a random sample, whose χ2-statistic has a value of 4.85 or more. We call
this the P-value, and it is illustrated in figure 7.3.
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Figure 7.3: The marked area is 0.088, i.e.
P (χ2 ≥ 4.85) = 8.8%.
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Null Hypothesis and Significance Level

Even though we now know that there is a probability of 8.8% to get a
random sample, whose χ2-statistic has a value of 4.85 or more, we still do
not know if we want to accept the company’s claim or not.

Before we calculate the χ2-statistic, we must therefore have decided how
small this probability has to be for us to reject the company’s claim. We
call this the significance level.

We typically choose 1%, 5% or 10%.

When we want to find out, whether to accept the company’s claim or not,
we perform a hypothesis test:

1. First, we describe the hypothesis we want to test. This is called the
null hypothesis, H0. In this case, the null hypothesis is

H0 : There are 20% red, 30% yellow and 50% green jelly beans.

2. Then we choose a significance level, e.g. 5%.

3. Next, we use the null hypothesis to calculate the expected values,
and then the χ2-statistic of the sample.

Here, the χ2-statistic is χ2 = 4.85.

4. We then calculate the probability of a random sample having a
χ2-statistic with this value or more. The degrees of freedom in
the χ2-distribution we use for the calculations is the number of
categories minus 1.

Here, we get
P (Q ≥ 4.85) = 8.8% .

5. Lastly, we compare the probability to the chosen significance level.
If the probability is less than the significance level, we reject the null
hypothesis, otherwise we accept the hypothesis.

In this case, we accept the hypothesis since 8.8% > 5%, which was
the chosen significance level.

If, instead of choosing 5%, we had chosen a significance level of 10%, we
would have rejected the hypothesis. This is why it is important to choose
the significance level, before we do the investigation—otherwise we can
choose the significance level, so that we accept or reject the hypothesis
according to our wishes.33If we choose a low significance level, we

have a greater chance of accepting a hy-
pothesis, even though it might turn out
to be wrong (false positive). On the other
hand, there is a greater chance of reject-
ing a true hypothesis if we choose a high
significance level (false negative).

Critical Value

In our previous investigation, we calculated the probability of the χ2-
statistic having a value of 4.85 or more. Instead, we could have found out
how large the χ2-statistic has to be before the probability falls below the
significance level. This is called the critical value. In the example with the
jelly beans, we can find the critical value C by solving the equation

P (χ2 ≥C ) = 0.05 ⇔ 1−Fχ2 (C ;2) = 0.05 .
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We solve this equation using a CAS, and get

C = 5.99 .

I.e. if the χ2-statistic is below this value, we accept the hypothesis, see
figure 7.4.
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Figure 7.4: The marked area is 0.05 = 5%.
Here, χ2 = 4.85 is below the critical value
C = 5.99 and we accept the null hypothesis.

7.4 TEST FOR INDEPENDENCE

In table 7.3, we see the results of a poll preceding an election. It is possible
to vote for the parties D, M and Q. As we see from the table, men and
women do not vote exactly alike.

Table 7.3: The result of a poll.

Men Women

D 386 297

M 127 134

Q 158 145

Undecided 24 30

Since there is a difference, we might ask, whether the choice of party
depends on sex. We can investigate this using the χ2-distribution.

In order to do this, we first need to calculate a χ2-statistic, but to do this,
we need the expected values. We calculate this based on the assumption
that votes and sex are independent. We therefore start by calculating how
many percent are going to vote for the different parties, independent of
sex.

In table 7.4, we calculate how many people in total are voting for the
different parties. We then calculate, how many percent this corresponds
to.

We see that 386 men and 297 women are going to vote for party D. This
corresponds to a total of 683 votes. Since 1301 people participated in the
poll, this corresponds to

683

1301
= 0.525 = 52.5% .

The rest of the relative totals are calculated in the same way.

We now calculate the expected values based on the assumption that men
and women vote alike, i.e. 683

1301 of the men vote for party D, and so do 683
1301

of the women. Since 695 participated in the poll, the expected number of
men who vote for party D is

683

1301
·695 = 364.9 .

There are 606 women, so the expected number of women who vote for
party D is

683

1301
·606 = 318.1 .

Men Women Total Relative total

D 386 297 683 683
1301 = 52.5%

M 127 134 261 261
1301 = 20.1%

Q 158 145 303 303
1301 = 23.3%

Undecided 24 30 54 54
1301 = 4.2%

Total 695 606 1301

Table 7.4: In this table, we have calculated
the total number of votes for each party as
well as the relative total.
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Men Women Total

D 683
1301 ·695 = 364,9 683

1301 ·606 = 318.1 683

M 261
1301 ·695 = 139,4 261

1301 ·606 = 121.6 261

Q 303
1301 ·695 = 161,9 303

1301 ·606 = 141.1 303

Undecided 54
1301 ·695 = 28,8 54

1301 ·606 = 25.2 54

Total 695 606 1301

Table 7.5: The expected values are calcu-
lated using the relative totals in table 7.4.
Notice that the totals are the same for the
expected and the observed values.

The rest of the calculations are shown in table 7.5.

Now that we know the expected values, we can calculate the χ2-statistic.
By definition 7.1

χ2 = (o1 −e1)2

e1
+ (o2 −e2)2

e2
+·· ·+ (on −en)2

en

= (386−364.9)2

364.9
+ (297−318.1)2

318.1
+·· ·+ (30−25.2)2

25.2
= 6.95 .

The sum consists of 8 fractions, since there are 8 values in the original
table (table 7.3).

Degrees of Freedom

We know the χ2-statistic, but we still need the degrees of freedom to
perform a hypothesis test based on the χ2-distribution.

We determine the degrees of freedom by looking at the number of rows
and columns in the original poll (table 7.3). The degrees of freedom are44The degrees of freedom is the number of

entries in the table, we need to know to
calculate the rest (if we know the totals). d f = (number of rows−1) · (number of columns−1) .

In the example we have 4 rows and 2 columns, so

d f = (4−1) · (2−1) = 3 .

Test and Conclusion

Now that we know the χ2-statistic and the degrees of freedom, we can
perform the test for independence:

1. Formulate a null hypothesis. In our example we have

H0 : Choice of party and sex are independent. .

2. Choose a significance level, e.g. 10%.

3. Calculate the expected values and the χ2-statistic. In the example
χ2 = 6.95.

4. Determine the degrees of freedom, d f , and the critical value C . In
our example, d f = 3, so the critical value can be found by solving
the equation55Remember that we chose a significance

level of 10% = 0.10. 1−Fχ2 (C ;3) = 0.10

Solving this equation, we find C = 6.25.
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5. Since the χ2-statistic is above the critical value (see figure 7.5), we
reject the null hypothesis. Therefore, we conclude that choice of
party is not independent of sex.

1 C = 6.25
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χ2 = 6.95
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Figure 7.5: The marked area is 0.10 = 10%.
Here, χ2 = 6.95 is above the critical value
C = 6.25 and we reject the null hypothesis.

7.5 CHOICE OF TEST

We have now looked at two different χ2-tests: The goodness-of-fit test and
the test for independence. When we have a data set and need to choose a
test, it is important that we know what both tests are for.

Goodness of Fit

The goodness-of-fit test is used to compare a sample to a distribution,
which we already know. This could be election data from previous years,
earlier sales numbers of a newspaper, etc.

So, we use the goodness-of-fit test to compare a sample to numbers we
already knew before we took the sample.

Test of Independence

In a test of indepence we do not know previous data. Here we investigate
a sample for independence between different categories. It could be
whether men and women choose alike, or if young and old people have
different political views, etc.

So, we use the test of independence when we are looking for indepen-
dence of different categories based solely on the numbers within the sam-
ple.

To sum it up:

• When we compare a sample to data we know before we take the
sample, then we use a goodness-of-fit test.

• When we compare the numbers within the sample itself, we use a
test for independence.

7.6 CONCLUSIONS OF HYPOTHESIS TESTS

When we analyse a data set in terms of a known distribution or we test for
independence, we usually want to find out if there is a difference.

But this is not testable. The only thing we can test is if the sample matches
an already known distribution (goodness of fit) or an equal distribution
(test for independence).

The null hypothesis is always that there is no significant difference. Even
if this is the opposite of what we are really interested in.

If we are doing a goodness-of-fit test, H0 is that the measured distribution
is the same as the expected distribution—i.e. that there is no difference.
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If we are testing for independence, H0 is that our categories are indepen-
dent.

If it then turns out that there is a difference or the variables are not in-
dependent, this will be because we reject H0. Rejecting a hypothesis
corresponds to finding a χ2-statistic above the critical value. It also corre-
sponds to finding a P-value below the significance level.

When analysing H0, we can do it in one of two ways:

1. Use the significance level to determine the critical value. Reject H0

if χ2 is larger than the critical value.

2. Determine the P-value. Reject H0 if P is less than the significance
level.



ASet Theory

Set theory is the basis of a lot of mathematics (e.g. the concept of functions,
and probability theory) is built upon. In this section, we therefore present
some of the basics of set theory.

A.1 SET

A set in mathematics is a collection of objects. In principle, an “object” can
be anything, but we normally restrict ourselves to mathematical objects.
In this section, we only look at sets of numbers.

A set can be defined in the following way:

Definition A.1

A set is a well-defined collection of mutually different objects.

Notice that the objects that make up the set have to be different. We
cannot talk about a set made up of four 2s. We can only have one 2 in a
set.

Sets are usually denoted by capital letters, e.g. the set S. If we want to
show that the set S consists of the numbers 1, 2, 3 and 10, we write

S = {1,2,3,10} . (A.1)

So, to show which objects, or elements, are in a set, we write the elements
in braces, {. . .}.1 1The elements do not have to be ordered,

i.e. {1,2,3} and {3,1,2} are the same set.
The number 3 is an element of the set S. We therefore write

3 ∈ S ,

which means “3 is an element of the set S”.

If we want to say the opposite, we just strike out the symbol. So, because
7 is not an element of S, we write

7 ∉ S .
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Large Sets

Sometimes sets contain a large amount of numbers. If this is the case, it
might be basically unreadable if we list all the numbers as in (A.1). If we
want to list all the positive integers between 0 and 100, we write instead

H = {1,2,3, . . . ,100} .

Here, the ellipsis . . . shows us that there are numbers missing from the
list. But from the pattern we can figure out what numbers are meant to be
included in the set.

There are also infinite sets, i.e. sets that do not end at a certain number.
The set of positive, odd numbers contains an infinite amount of elements
and can be written as

O = {1,3,5,7, . . .} .

Special Sets

Some sets are used repeatedly in different contexts. These sets are denoted
by special symbols:

; The empty set, i.e. the set which contain no elements.

N The natural numbers: The set of all positive integers,N= {1,2,3,4,5, . . .}.
Note that 0 is not included.

Z The whole numbers, or integers: The set Z= {. . . ,−2,−1,0,1,2,3, . . .}.

Q The rational numbers: The set of all numbers that can be written as
fractions, e.g. 1

7 and −5
2 .

R The real numbers: The set of all the numbers on the number line. A few
examples of real numbers are −1, 1

6 , π, e and
p

2.

Here, it is important to note that all of the natural numbers are also
integers, i.e. the set N is a part of the set Z. In the same way, the set of
integersZ is a part of the set of rational numbersQ,2 and the set of rational2This is because every integer can be writ-

ten as a fraction, e.g. 2 = 6
3 and −4 =− 8

2 . numbers is a part of the set of real numbers (see figure A.1).

NZQR

Figure A.1: All of the natural numbers are
integers, and all of the integers are rational
numbers, etc.

A.2 SET BUILDER

Sometimes it is easier to describe a set by listing properties of the numbers
in the set. An example is

A : all of the numbers between 1 and 6 .

We can write this set using set-builder notation:

A = {x ∈R |1 < x < 6} .

This expression contains two parts. The part before the vertical line (x ∈R)
shows what larger set the numbers in our set come from. Here, x ∈ R
means that we are looking at the set of real numbers, i.e. every possible
number. The part after the line is a condition on the numbers in the
set—in this case that the numbers must be between 1 and 6.33The notation 1 < x < 6 is a contraction

of 1 < x and x < 6, i.e. we are looking at
numbers both greater than 1 and less than
6.
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Other examples of set-builder notation are

B = {x ∈Z |1 < x < 6} , C = {
x ∈Q ∣∣x2 < 9

}
.

Here, B is the set of all integers between 1 and 6, so we might just as well
write

B = {2,3,4,5} .

C is the set of all fractions, whose squares are less than 9. This set cannot
be written as a simple list, since there are infinitely many numbers in the
set.

A.3 INTERVALS

The set A from the previous section is an example of an interval. An
interval is a set containing every real number between two given values,
e.g. “the set of real numbers between 1 and 6” or “the set of real numbers
from −5 to 80, including 80”. Sets containing every number greather than
or less than some given value, are also called intervals.

In mathematics, we often need to talk about intervals, and therefore we
have invented a notation for intervals. The set A can be written in this
way:

A = ]1;6[ .

This means that the set A is made up of every number between 1 and 6.
Because the brackets point away from the numbers, neither 1 nor 6 is
included in the interval (see figure A.2).

0 1 2 3 4 5 6 7

Figure A.2: The interval ]1;6[ . The empty
circles at 1 and 6 show that these numbers
are not included in the interval.If, instead, we want the interval from 1 to 6 including 1 and 6, we write

D = [1;6] .

In set-builder notation D can also be written as D = {x ∈R |1 ≤ x ≤ 6}.

Some other examples are (see figure A.3).

]−3;2] = {x ∈R |−3 < x ≤ 2}[−4; 1
2

[ = {
x ∈R ∣∣−4 ≤ x < 1

2

}
.

−4 −3 −2 −1 0 1 2

−4 −3 −2 −1 0 1 2

Figure A.3: The intervals ]−3;2] and[
−4; 1

2

[
.

If we want to look at the interval containing every number greater than 3,
we use the symbol ∞ (inifinity):

E = ]3;∞[ .

So, the set E contains every number greater than 3. If, instead, we want to
talk about all the numbers less than or equal to 5, we write

F = ]−∞;5] .

Notice that when we use the symbol ∞, the bracket has to point away
from the symbol (this is because ∞ is not a number, but a symbol we use
to show that the interval does not end in that direction).

If we let our interval be infinite in both directions, we get an interval
containing every real number, i.e.

R= ]−∞;∞[ .
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A.4 COMBINING SETS

If we have two sets, A and B , we can form new sets in different ways. We
might look at all the numbers which are in both A and B , or the numbers,
which are in A, but not in B .

The following definitions list some of the ways in which we can build new
sets.

Definition A.2

The intersection of two sets A and B contains the numbers, which are
both in A and in B . The intersection of A and B is denoted by A∩B .

A
B

A∩B

Figure A.4: The intersection A∩B .

Example A.3
If A = {1,2,3,4,5} and B = {2,4,6,8}, then

A∩B = {2,4} .

Definition A.4

The union of two sets A and B contains all of the numbers that are in
either A or B (or both). The union of A and B is denoted by A∪B .

A
B

A∪B

Figure A.5: The union A∪B .

Example A.5
If A = {1,2,3,4,5} and B = {2,4,6,8}, then

A∪B = {1,2,3,4,5,6,8} .

Definition A.6

The difference between two sets A and B contains the numbers, which
are in A but not in B . The difference between A and B is denoted by
A \ B .

A
B

A \ B

Figure A.6: The difference A \ B .

Example A.7
If A = {1,2,3,4,5} and B = {2,4,6,8}, then

A \ B = {1,3,5} .

and
B \ A = {6,8} .

So, when we are looking at differences between sets, the order matters.
A

{A

Figure A.7: The complement {A.

Lastly, we define the complement, which is the set of all elements that are
not in a given set. This is only well-defined if we first define a universal set,
which contains all the numbers, we allow a set to contain in the present
context.4

4The universal set can be all of the real
numbers, i.e. R, but it could also be the
natural numbers N, or some limited set,
e.g.

{
−2,0, 1

3 ,7
}

.

Definition A.8

Let U be the universal set. The complement {A of the set A contains
all of the elements in U that are not in A, i.e. {A =U \ A.
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A.5 RELATIONS BETWEEN SETS

Sometimes we need to compare different sets. Then we need to know
what it actually means for two sets to be equal.

Definition A.9

Two sets A and B are equal if they contain the exact same elements.
This is denoted by A = B .

If every element in A is an element in B , but all of the elements in B are
not necessarily in A, we call A a subset of B .

Definition A.10

The set A is a subset of the set B if every element in A is also an
element in B . This is denoted by A ⊆ B .

Example A.11
The set A = {−1,1} is a subset of B = {−2,−1,0,1,2,3,4}, i.e.

{−1,1} ⊆ {−2,−1,0,1,2,3,4} . B A

Figure A.8: A is a subset of B , A ⊆ B .

Previously we argued that every natural number is an integer, and every
integer is a rational number,, etc. We can write this using the idea of
subsets as

N⊆Z⊆Q⊆R .

This is shown in figure A.1.

If two sets have common elements, they are called disjoint.

Definition A.12

Two sets A and B are called disjoint if no element in A is an element
in B (and no element in B is an element in A), i.e. when A∩B =;.

Example A.13
The sets A = {1,2,3} and B = {−1,0,7} are disjoint.

A

B

Figure A.9: A and B are disjoint.





BMore Derivatives

In this section, we show how to find the derivatives of ln(x), ex , ax and
xn . To find the first of these, we use the three-step method—the rest are
found using the rules in sections 1.3 and 1.4.

This will prove the last of the assertions in table 1.1.

Theorem B.1

If f (x) = ln(x), the derivative is f ′(x) = 1
x .

Proof
Here, we use the three-step method. First, we find1 1In this calculation, we use the rule

ln(a)− ln(b) = ln
( a

b

)
.

∆ f = ln(x +∆x)− ln(x) = ln

(
x +∆x

x

)
= ln

(
1+ ∆x

x

)
.

Next, we look at

∆ f

∆x
= ln

(
1+ ∆x

x

)
∆x

= 1

∆x
· ln

(
1+ ∆x

x

)
. (B.1)

We cannot seem to simplify this further.

Now, we need to let ∆x → 0, but the expression (B.1) is too complicated to
see what that gives us. We therefore use a little trick: We introduce a new
variable t , which is equal to ∆x

x . Letting ∆x → 0 corresponds to letting
t → 0.

(B.1) can now be rewritten as

∆ f

∆x
= 1

xt
· ln(1+ t ) ,

which then corresponds to

∆ f

∆x
= 1

x
· 1

t
· ln(1+ t ) = 1

x
· ln

(
(1+ t )

1
t

)
. (B.2)

It is well-know that[2]

(1+ t )
1
t → e når t → 0 . (B.3)
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Actually, this is sometimes used as the definition of the number e. We are
not going to prove the result in (B.3), but that it is correct may be inferred
from the graph of (1+ t )

1
t shown in figure B.1.

1

1

e

x

y

Figure B.1: The graph of (1+ t )
1
t .

Now, letting ∆x → 0 is the same as letting t → 0 in (B.2), and using the
result from (B.3), we get

f ′(x) = 1

x
· ln(e) = 1

x
. �

Theorem B.2

When f (x) = ex , the derivative is f ′(x) = ex .

Proof
Since ex is the inverse of ln(x), we have the following equation:

ln(ex ) = x . (B.4)

If we differentiate both sides of this equation, it will still hold.

On the left hand side, we need to differentiate a composite function, and
we get22Here, it is important to remember that we

do not yet know the derivative of ex . There-
fore, we must write (ex )′, which is the same
as f ′(x).

(
ln(ex )

)′ = 1

ex · (ex )′ = 1

ex · f ′(x) .

On the right hand side we get

(x)′ = 1 .

Since the left hand side is equal to the right hand side, we have

1

ex · f ′(x) = 1 ⇔ f ′(x) = ex . �

Theorem B.3

If f (x) = ax , where a > 0, then f ′(x) = ln(a) ·ax .

Proof
We can rewrite the function f as

f (x) = ax =
(
eln(a)

)x = eln(a)·x .

This is a composite function, and its derivative is

f ′(x) = eln(a)·x · ln(a) = ax · ln(a) = ln(a) ·ax . �

Theorem B.4

If f (x) = xn , the derivative is f ′(x) = nxn−1.
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Proof
First, we rewrite the formula for f (x):

f (x) = xn = eln(xn ) = en·ln(x) .

So, f can be written as a composite function, where the outer function is

p(q) = eq ,

and the inner function is

q(x) = n · ln(x) ,

where n is a constant.

If we differentiate the outer function, we get

p ′(q) = eq .

The inner function yields

q ′(x) = n · 1

x
.

So,

f ′(x) = p ′(q) ·q ′(x) = eq ·n · 1

x

= en·ln(x) ·n · 1

x
= xn ·n · 1

x
= n · xn−1 . �





CLimits and Differentiability

In chapter 1, we defined the derivative f ′(x) as the value of the fraction
∆ f
∆x as ∆x approaches 0. What we actually mean by “approaches 0” was
never really investigated. We just rewrote the fraction, so it was possible
to let ∆x = 0 and get a useful result.

If we want to do this in a mathematically meaningful way, we need to
define, what we mean by such vague terms as “approaches” and “close to”.
To do that, we need to introduce the concept of a limit.

C.1 LIMITS

To describe the concept of a limit, we first look at the function

f (x) = x2 −1

x −1
.

This function is undefined for x = 1, since

f (1) = 12 −1

1−1
= 0

0
,

which has no mathematical meaning.

If we draw the graph of f , we get figure C.1. Here, we see that even though
f is undefined for x = 1, using the graph we might say something about,
what f (1) should be, if this value were defined.

1

1

2

x

y

Figure C.1: The graph of f (x) = x2−1
x−1 .

If we calculate f (x) for values of x that are “close to” 1, we get table C.1.
Looking at figure C.1 and table C.1, it seems reasonable to suggest that
the closer x gets to 1, the closer f (x) gets to 2.

Table C.1: Function values of f (x) = x2−1
x−1 .

x f (x)

0.5 1.5

0.9 1.9

0.99 1.99

1 undefined

1.01 2.01

1.1 2.1

1.5 2.5

So, although f (1) is undefined, f (x) approaches a fixed number, when x
approaches 1. We therefore say that f (x) has a limit for x approaching 1.
The value of this limit is 2. We write

lim
x→1

f (x) = 2 .
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Mathematically, we define a limit by investigating if the function value ap-
proaches some fixed number, when the independent variable approaches
some (other) fixed number (like x = 1 above).

We have the following definition of the limit of a function:

Definition C.1

Let f be a function, and let x0 and L be numbers. If for any small
number ε, we can ensure that f (x) is closer to L than ε as long as x
is closer to x0 than some other number δ, then we call L the limit of
f (x) for x approaching x0, and we write

lim
x→x0

f (x) = L .

Figure C.2 shows the meaning of this definition: The function value f (x)
is closer to L than a given distance ε, as long as x is closer than δ to x0.

x0

L
ε

ε

δ δ
x

y

Figure C.2: The function value is closer to L
than ε if we let x be closer than δ to x0.

Example C.2
For the function f (x) = x2−9

x−3 , we have

lim
x→3

f (x) = 6 .

This means that f (x) can get as close as we want to 6, as long as x is close
enough to 3.

E.g., if we want f (x) to be closer to 6 than ε= 0.1 (i.e. f (x) is between 5.9
and 6.1), x has to be closer to 3 than δ= 0.07—we might choose x = 3.05:

f (3.05) = 3.052 −9

3.05−3
= 0.3025

0.05
= 6.05 ,

which is closer to 6 than 0.1.

If we want to get even closer, we might demand that f (x) must be between
5.99 and 6.01. Here, we might let x = 2.995, and we get

f (2.995) = 2.9952 −9

2.995−3
= −0.029975

−0.005
= 5.995 .

Again we are as close as we want to the number 6.

We therefore conclude1 that1Two examples are not really enough to
conclude that the limit is 6. We would actu-
ally need to find out how to choose δ, when
ε is given.

lim
x→3

x2 −9

x −3
= 6 .

The concept of a limit makes perfect sense, when we investigate how
functions behave at undefined values of the independent variable. But
what if we want to investigate a limit at a value of x, where the function is
defined?

Example C.3
What is limx→5 x2 +3?

The expression x2 +3 is defined for x = 5, where the value is

52 +3 = 28 .
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If we let x approach 5, the value of x2+3 will approach 28, and we therefore
get

lim
x→5

x2 +3 = 28 .

Sometimes we can just calculate the value of the expression for our value
of x.

We can find the limit of f (x) for x → x0 in some cases by calculating f (x0).
But this is not always the case, even if the function might be defined for
x = x0.

1

1

x

y

Figure C.3: The graph of the piecewise linear
function in example C.4.

Example C.4
Here, we look at the function

f (x) =
{

x +1 for x < 2

4−x for x ≥ 2
.

The function f is defined to be equal to x +1, as long as x < 2, after that
it is equal to 4−x. Such a function is called a “piecewise linear function”.
The graph of f is shown in figure C.3.

The function value at x = 2 is

f (2) = 4−2 = 2 ,

but what is the limit as x → 2?

When x < 2, then f (x) = x +1, i.e. f (x) gets closer and closer to 2+1, the
closer x gets to 2. If we examine the limit by letting x get closer to 2 from
below, we find the value 3.

If we investigate the limit of f (x) by letting x approach 2 from above,
we follow the graph of 4− x, and here the value gets closer to 2, when x
approaches 2.

So, we get two different answers depending on which way, we approach
x = 2. Therefore, we must conclude that the limit limx→2 f (x) does not
exist—even though the function is defined for x = 2.

Example C.5
Previously, we looked at the function f (x) = x2−1

x−1 and concluded that

lim
x→1

f (x) = 2 .

In principle, we might argue that we cannot know this from figure C.1 and
table C.1, since it is impossible solely from the figure and the table to see
if the true limit is e.g. 2.00000326 and not exactly 2.

However, it turns out that x2 −1 can be rewritten as (x +1)(x −1), and
therefore

x2 −1

x −1
= (x +1)(x −1)

x −1
= x +1 ,

as long as x 6= 1.
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But, since the the definition of the limit does not depend on how the
function behaves at x = 1, but only when x is close to 1, we have

lim
x→1

x2 −1

x −1
= lim

x→1
x +1 .

So, here we only need to find out, which number x +1 approaches, when
x approaches 1. This number is exactly 2.

Therefore

lim
x→1

x2 −1

x −1
= 2 .

If it is possible to simplify the formula of the function we are investigating,
it is easier to investigate its limits.

C.2 CONTINUITY

Most of the functions, we investigate, have graphs that are connected. A
function, whose graph is connected, is called continuous. We can define
the concept of continuity using limits.

In example C.4, we looked at a function, whose graph was not connected
(see figure C.3). In the example, we showed that this function has no limit
at the point where the graph “jumps”.

But in example C.3, we investigated a limit which was equal to the function
value. The graph of the function in question is connected, because when
we approach a value of x, the function value automatically approaches
f (x)—from above as well as from below—and (x, f (x)) is a point on the
graph.

We therefore define continuity the following way:

Definition C.6

A function f is called continuous in an interval ]a;b[ if for all x0 ∈
]a;b[

lim
x→x0

f (x) = f (x0) .

Example C.7
The function

f (x) = x2 +4 ,

is continuous for all x ∈R.

If we choose e.g. x0 = 3, we find

lim
x→3

f (x) = lim
x→3

x2 +4 = 32 +4 = f (3) ,

and we can do this calculation for any value of x0—not just 3.

So, f (x) is continuous.
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Example C.8
The function

f (x) =
{

x for x 6= 3

4 for x = 3

is not continuous.

We see from the graph (figure C.4) that

lim
x→3

f (x) = 3 ,

but
f (3) = 4 .

So, limx→3 f (x) 6= f (3), and the function is not continuous.

1

1

x

y

Figure C.4: This function is not continuous.

C.3 DIFFERENTIABILITY

Using limits, we can define the derivative of a function in a more precise
way than we did in chapter 1. A function, where the derivative exists for
all x in an interval, is called differentiable on this interval.

Definition C.9

Let f be a function defined on the interval ]a;b[ . If the limit

lim
∆x→0

f (x0 +∆x)− f (x0)

∆x
(C.1)

exists for all x0 ∈ ]a;b[ , the function is called differentiable on the
interval ]a;b[ .

The limit (C.1) is called the derivative at x0 and denoted by f ′(x0).

There is nothing new in this definition. But the definition in chapter 1
does not mention limits, so the definition is not as exact as this one. But
the content is the same.

Lastly, it is worth mentioning that if a function is differentiable, it is also
continuous. So, if a function is differentiable, its graph is connected. The
opposite does not apply—functions exist, whose graphs are connected,
but that are not differentiable.

Differentiability roughly corresponds to the function having a “smooth”
curve. The graph is not allowed to have “kinks”. In figure C.5, we see the
graph of a function that is continuous, but not differentiable.

−3 1 2

1

x

y

Figure C.5: This function is not differen-
tiable at x = −3 or at x = 2, but it is con-
tinuous everywhere.
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grouped data, 43
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subset, 66, 97
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