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Preface

This document is a translation of the Danish “Matematik: Grundforløbet”, which is a textbook on
mathematics for the basic level of the Danish stx. Since English is not my first language, I apologise in
advance for errors in translation.

The primary aim is to provide a textbook without too much “clutter”. Examples are kept to a minimum,
and the text mainly covers the basic mathematics. It would therefore be a good idea to supplement the
text with examples and other materials that cover specific uses of the mathematical tools.

Mike Auerbach

ORIGINAL PREFACE (IN DANISH)

Disse matematiknoter er skrevet til matematikundervisningen i grundforløbet på stx. Noterne er
skrevet med det formål at have en grundbog, som kun indeholder den grundliggende matematiske
teori. I forbindelse med samarbejde i studieretningen eller med andre fag er det derfor nødvendigt at
supplere med eksempler og andet materiale, der dækker konkrete anvendelser.

Til gengæld dækker noterne den rent matematiske fremstilling af kernestoffet på stx, hvilket ifølge min
opfattelse gør dem velegnede til en første behandling af stoffet samt i forbindelse med eksamenslæs-
ningen.

Til slut en stor tak til de mange matematikkolleger, der er kommet med rettelser og gode ændrings-
forslag. De fejl og mangler, der stadig måtte findes, er naturligvis udelukkende mit ansvar.

Mike Auerbach
Tornbjerg Gymnasium
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1Graphs and Functions

1.1 VARIABLES

A variable is—as the name implies—a quantity, which varies.1 It is a 1A quantity, which has a fixed value, is
called a constant.quantity that does not have a fixed value. A mathematical variable is

always denoted by exactly one letter,2 e.g. x. 2In mathematics, lower and upper case let-
ters denote different variables—i.e. x and
X are different variables.

We often encounter variables in formulas. A formula is an expression used
to calculate a certain quantity based on other known quantities.

An example is the formula for the area of a rectangle. We have

A = l ·w , (1.1)

where A is the area, l is the length, and w is the width of the rectangle. In
this example, A, l and w are variables, i.e. they do not have a fixed value.
But there is a connection between the values of the variables—which is
expressed in the formula.

Mathematics is especially useful for exploring this sort of connections. We
might look at the connection between areas and lengths, the connection
between the price and demand, or the connection between travel time
and the distance travelled.

Example 1.1
A connection to a domestic gas supply costs DKK 937.50 annually, plus
DKK 7.26 per m3 of gas used.

We can describe the cost of the gas connection in the formula

P = 7.26 ·V +937.50 ,

where P is the price paid, and V is the used amount of m3 of gas.

Example 1.2
If we let an object drop, the connection between the time the object has
fallen, and the distance is

s = 4.91 · t 2 ,

where t is the time (in seconds), and s is the distance fallen (in metres). 3 3This correlation was found experimen-
tally by Galileo Galilei at the end of the
1500s.[5]7
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Formula (1.1) shows us that the area of a rectangle depends on its length
and width. l and w are here called independent variables because their
values may vary freely, while A is called the dependent variable, since its
value depends on the values of the other two variables.

If we instead want to view l as a dependent variable, the formula (1.1)
may be rewritten as44In a mathematical context, we usually

view a variable isolated on one side of the
equation as the dependent variable, and
the rest as independent.

l = A

w
.

1.2 PROPORTIONALITY

Variables may be connected in such a way that one is proportional to the
other. We define the concept of proportionality in the following way:

Definition 1.3: Proportionality

If c is a constant (c 6= 0), then

1. y is directly proportional to x if y = c · x,

2. y is inversely proportional to x if y = c
x .

The constant c is called the proportionality constant.

When we talk about direct proportionality, we often leave out “direct”.
I.e., if we write “y is proportional to x”, we actually mean “. . . directly
proportional to . . . ”.

If we rewrite the formulas in defintion 1.3, the two forms of proportionality
can also be expressed in the following way:

1. y is directly proportional to x if y
x = c.

2. y is inversely proportional to x if y · x = c.

We also see that if y = c · x, then x = 1
c · y . So if y is directly proportional

to x (with proportionality constant c), x is also directly proportional to y
(with proportionality constant 1

c ).

If y = c
x , then x = k

y . So if y is inversely proportional to x, then x is also
inversely proportional to y (with the same proportionality constant).

Example 1.4
If a telephone call costs DKK 0.70 per minute, the price of a call is directly
proportional to the duration.

If the price is called P , and the duration (in minutes) is called D , then

P = 0.70 ·D .

Here, the proportionality constant is 0.70.

Example 1.5
If we drive from Odense to Copenhagen (a distance of about 160 km), the
travel time is inversely proprtional to the speed, with which we travel.



1.3 Graphs 9

If we measure the time t in hours, and the speed v in kilometres per hour,
the proportionality constant is 160, and

t = 160

v
.

From this we calculate that if we drive with a speed of 80 km/h, we get to
Copenhagen from Odense in 2 hours, whereas if we drive with a speed of
160 km/h, we get there in only 1 hour.

Example 1.6
“T is proportional to the square of p and inversely proportional to s.”

We can write this as the formula

T = c · p2

s
,

where c is the proportionality constant.

1.3 GRAPHS

If we have two variables, where the value of one of the variables depends
on the other, it is possible to draw a figure illustrating this dependency.
We call this a graph,.

Coordinate Systems

A coordinate system is a sort of grid, which we lay across the plane. It is
used to describe the position of points.

We start by drawing two perpendicular axes, the x- and the y-axis. The
two axes are actually number lines, which intersect at 0, see figure 1.1. The
intersection between the two axes is called the origin of the coordinate
system.

If we draw a line from a point in the plane perpendicular to the x-axis,
the line intersects the x-axis at a number. We call this number the x-
coordinate of the point. Similarly, we define the y-coordinate as the num-
ber we get where a line perpendicular to the y-axis intersects the axis. Any
point can now be described by its coordinates, i.e. a point is a pair of coor-
dinates (x, y), which tell us, where the point is placed in the coordinate
system (see figure 1.1). The origin has coordinates (0,0). −3 1 2 4

−2

1
2

4
A(2,4)

B(−3,2)

C (4,−2)

x

y

Figure 1.1: The three points A(2,4), B(−3,2)
and C (4,−2) in a coordinate system.

Graphs

If there is a dependency between two variables (e.g. x and y), we can draw
a graph to illustrate this. We do this by marking each of the points (x, y),
where the coordinates x and y fit the dependency.

Example calculation Here, we look at the dependency

y = 5−x2 .
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We now calculate a table of values of x and corresponding values of y . E.g.
if we choose x = 3, we get:

x = 3 ⇒ y = 5−32 =−4 .

The finished table could look like 1.1.

Table 1.1: A table of y = 5−x2.

x y

−2 1

−1 4

0 5

1 4

2 1

3 −4

This table shows that some of the points in the graph are (−2,1), (−1,4),
(0,5), etc. We now draw these points in a coordinate system, and the graph
is drawn by connecting the points with a curve (see figure 1.2).

1

1(−2,1)

(−1,4)

(0,5)

(1,4)

(3,−4)

x

y

Figure 1.2: The graph of y = 5−x2.

Using the graph, we can find pairs of numbers x and y , which “go together”.
We can of course also do this by calculation, using the formula y = 5−x2.

1.4 FUNCTIONS

In a formula such as y = 5−x2, the right hand side is an expression, whose
value only depends on the value of the variable x. Therefore we say that
the right hand side is a function of x.

Functions are named using a letter, here we will call it f . To show that f is
a function of x, we write:

f (x) = 5−x2 .

This means that f represents the calculation “square the number, and
subtract it from 5”.

f (x) is read “ f of x”, and the x in the parentheses tells us that the value of
f (the function value) depends om the value of x.

We call f (x) = 5− x2 a formula for the function. The formula shows us
how to calculate the function value for a given value of the independent
variable.

Example calculation Here we look at the function

f (x) = 3 ·px +2 .

The graph of this function can be seen in figure 1.3.

1 2

1

6
(2,6)

x

y

Figure 1.3: The graph of f (x) = 3 ·px +2.

As we see in the figure, the graph of the function passes through the point
(2,6). We write this in the following way:

f (2) = 6 .

This means that if we put x = 2, the function value will be 6. We can also
calculate this by replacing x in the formula by 2:

f (2) = 3 ·p2+2 = 3 ·
p

4 = 3 ·2 = 6 .

We can also read the function value from the graph like in figure 1.3.

Example 1.7
Here, we look at the function h(t ) = t 2 −3.
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The function values h(−1) and h(4) are calculated like this:

h(−1) = (−1)2 −3 = 1−3 =−2

h(4) = 42 −3 = 16−3 = 13 .

This means that the graph of the function h passes through the two points
(−1,−2) and (4,13).

If we know the function value, we can also go backwards and find out,
which value of the independent variable has this function value. We can
use the graph for this, but the problem can also be solved by calculation,
like the following example shows.

Example 1.8
When does the function g (x) = 2x +1 assume the value 17?

The answer to this question may be found by solving the equation g (x) =
17. This is done in the following way:

g (x) = 17 ⇔
2x +1 = 17 ⇔

2x = 16 ⇔
x = 8 .

The answer to the question is that g (x) = 17 when x = 8.

1.5 INTERSECTIONS

If two graphs intersect, the intersections can be found by equating the
two functions’ formulas and solving the equation.

This works because at the points, where the graphs intersect, the function
value and the value of the dependent variable must be equal for both
functions. We illustrate this by an example.

Example 1.9
The two functions

f (x) = x −5 and g (x) =−2x +1

have intersecting graphs (see figure 1.4).

The coordinates of the intersection can be found by solving the equation
f (x) = g (x):

x −5 =−2x +1 ⇔
3x = 6 ⇔

x = 2 .

Now we know the x-coordinate. To find the intersection, we also need to
know the y-coordinate. This is determined by inserting the x-coordinate
in one of the functions:

y = f (5) = 2−5 =−3 .

The two graphs intersect at (2,−3), which we can also see in figure 1.4.

1

1

f

g

(2,−3)

x

y

Figure 1.4: The intersection of the graphs of
the two functions f (x) = x −5 and g (x) =
−2x +1.
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1.6 SOLVING EQUATIONS GRAPHICALLY

We can find intersection points between graphs by solving an equation.
This means that we can also solve equations by finding intersection points.

If we have an equation, the two sides may be viewed as functions. Where
the two sides are equal (i.e. where the graphs intersect), we find the
solution(s) of the equation.

Example 1.10
The equation

x2 −3 =−2x

can be solved by drawing the graphs of

f (x) = x2 −3 and g (x) =−2x .

In figure 1.5, we see that the two graphs intersect at (−3,6) and (1,−2).
This equation therefore has two solutions:

x =−3 ∨ x = 1 .

1

1

(−3,6)

(1,−2)

x

y

Figure 1.5: The solutions of x2−3 =−2x are
the x-coordinates of the intersections.
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Functions can be described by formulas. If functions have formulas that
follow a similar pattern, they have similar properties.1 A similar pattern 1This also applies if they have similar

graphs.might be

f (x) = 3x +2, g (x) = 7x −5 and h(x) =−4x +3 .

Functions whose formulas follow a pattern like f , g and h above are called
linear functions.

Definition 2.1

A linear function is a function of the form

f (x) = ax +b ,

where a and b are two numbers.

It turns out that the graph of a linear function is a straight line. This is one
of the reasons why these functions are called linear (see figure 2.1).

1

5

f

g

h

x

y

Figure 2.1: The graphs of the three linear
functions f , g and h.

2.1 SLOPE AND INTERCEPT WITH THE AXES

From figure 2.1, we can find the values of the numbers a and b in the
formulas. We have the following theorem:

Theorem 2.2

For a linear function f (x) = ax +b the following holds:

1. If the independent variable x increases by 1, the function value
f (x) increases by a.

2. The graph of the function intercepts the y-axis at b.

Proof
When x increases by 1, the function value increases from f (x) to f (x +1).
Therefore the function value increases by

f (x +1)− f (x) = (a(x +1)+b)− (ax +b)

13
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= ax +a +b −ax −b

= a .

On the y-axis x = 0. The intercept with the y-axis is therefore

f (0) = a ·0+b = b . �

This theorem shows that for linear functions, the function value increases
by a fixed number (a) every time x increases by 1. This is the reason
why the graph is a straight line. The larger the number a, the more f (x)
increases, and the graph is steeper. Therefore the number a is called the
slope of the graph..

If a is a negative number, f (x) decreases when x increases; the function
is then decreasing.

Theorem 2.3

The slope a of the function f (x) = ax +b has the following property:

1. If a > 0 the function is increasing.

2. If a < 0 the function is decreasing.
1

−2

1

f

a = 1
g

a =−3

x

y

Figure 2.2: Finding the numbers a and b.

Example 2.4
In figure 2.2 we see the graphs of the linear functions f and g .

The graph of f intercepts the y-axis at −2. If we move 1 to the right of the
graph, we have to move 1 up to reach the graph again. Therefore a = 1.

Thus f has the formula f (x) = 1 · x + (−2) or

f (x) = x −2 .

The graph of g intercepts the y-axis at 1, and if we move 1 to the right of
the graph, we need to move 3 down; so a =−3. The formula is

g (x) =−3x +1 .

In the special case where the slope is 0, the function is constant, i.e. the
graph is a line parallel to the x-axis. Such a line does not intercept the
x-axis.22Unless the line is the x-axis, in which case

it intercepts the x-axis in an infinite num-
ber of points. However, a linear function whose slope is not 0 does have a graph that

intercepts the x-axis. This intercept can be calculated from the formula.

Theorem 2.5

The graph of the linear function f (x) = ax +b intercepts the x-axis in

the point
(
− b

a ,0
)
.

Proof
On the x-axis the y-coordinate is 0.3 The graph of f must therefore inter-3Remember that every point on the x-axis

can be written as (x,0) and every point on
the y-axis can be written as (0, y).
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cept the x-axis where
f (x) = 0 ,

i.e.

ax +b = 0 ⇔ ax =−b ⇔ x =−b

a
.

Thus the intercept with the x-axis is
(
− b

a ,0
)
. �

Example 2.6
The linear function f (x) = 4x−12 intercepts the y-axis in b =−12 and has
slope a = 4. It intercepts the x-axis in

x =−b

a
=−−12

4
= 3 .

Therefore the intercept with the x-axis is the point (3,0), and the intercept
with the y-axis is the point (0,−12).

2.2 CALCULATING THE FORMULA

If we know two points on the graph of a linear function, this suffices to
uniquely determine the function.4 There is a correlation between the 4This is because precisely one straight line

passes through two given points.coordinates of the points and the numbers a and b.

It turns out that this correlation can be described by two simple formulas.

Theorem 2.7

If the graph of f (x) = ax +b passes through the two points P (x1, y1)
and Q(x2, y2) then

a = y2 − y1

x2 −x1
and b = y1 −ax1 .

x1 x2

b

y1

y2

P

Q 1

a

x

y

Figure 2.3: The two points P and Q on the
graph of f (x) = ax +b.

Proof
In figure 2.3, we see the graph of the function f (x) = ax +b and the two
points P (x1; y1) and Q(x2; y2).

Because the point P is on the line f (x1) = y1, and since Q is on the line
f (x2) = y2. This yields the equations

y2 = ax2 +b ,

y1 = ax1 +b . (2.1)

If we subtract the second equation from the first we get

y2 − y1 = (ax2 +b)− (ax1 +b) ,

which can be reduced to

y2 − y1 = ax2 −ax1 .

On the right hand side, a is a common factor so

y2 − y1 = a(x2 −x1) ⇔ y2 − y1

x2 −x1
= a .
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This proves the formula for a.

To obtain the formula for b, we again look at equation (2.1):

y1 = ax1 +b .

If we solve for b in this equation we get

y1 −ax1 = b ,

which proves the formula for b. �

Example 2.8
The linear function f has a graph that passes through the points P (3,5)
and Q(6,−7). What is the formula for the function?

To answer this question, we look at the two points. Here we have

x1 = 3 , y1 = 5 , x2 = 6 and y2 =−7 .

Now we use the formulas in theorem 2.7 and get

a = y2 − y1

x2 −x1
= −7−5

6−3
= −12

3
=−4 ,

and
b = y1 −ax1 = 5− (−4) ·3 = 5+12 = 17 .

The function therefore has the formula f (x) =−4x +17.

2.3 LINEAR GROWTH

The growth of a linear function can be described in the following way:55This theorem is an extension of theo-
rem 2.2.

Theorem 2.9

Let f be a linear function, f (x) = ax +b. When x increases by ∆x the
function value increases by a ·∆x.

Proof
If x increases from x1 to x2 where x2 = x1+∆x then the function value will
increase from

y1 = f (x1) = ax1 +b

to
y2 = f (x2) = f (x1 +∆x) = a(x1 +∆x)+b = ax1 +a ·∆x +b .

The function value then increases by

y2 − y1 = (ax1 +a ·∆x +b)− (ax1 +b) = a ·∆x .

This proves the theorem. �

Example 2.10
In table 2.1, we see an example of the growth of a linear function.

The function f (x) = 3x +7 is increasing, and every time x increases by 2,
the function value increases by 3 ·2.
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Table 2.1: The growth of f (x) = 3x +7.

x y

−2 1

0 7

2 13

4 19

+2

+2

+2

+3 ·2

+3 ·2

+3 ·2

Example 2.11
Here we look at the function f (x) = 3x −4 which has slope a = 3. If x
increases by ∆x = 5, the function value will increase by

a ·∆x = 3 ·5 = 15 .

Every time x increases by 5, the function value increases by 15.

We can also ask how much x must increase for the function value to
increase by 60? In this case a ·∆x = 60, i.e.

3 ·∆x = 60 ⇔ ∆x = 20 .

x has to increase by 20, for the function value to increase by 60.

Example 2.12
Here we look at the function f (x) =−2x +7. When x increases by ∆x = 3
the function value increases by

a ·∆x =−2 ·3 =−6 .

Since the function value increases by −6, it decreases by 6 every time x
increases by 3.6 6A negative increase corresponds to a de-

crease. In mathematical models it is often
useful to calculate a signed increase and
determine afterwards if it is actually an in-
crease or a decrease.

The next examples demonstrate how a mathematical description of linear
growth can answer certain questions.

Example 2.13
In a certain town the population is given by the function

N (x) = 213x +14752 ,

where N (x) is the number of inhabitants x years after the year 2000.

In this formula there are two constants 213 and 14752. The function N (x)
is a linear function, i.e. the number 213 is a slope: Every time x increases
by 1 the function value increases by 213. Since x is measured in years
and the function value is the population, we know that the number of
inhabitants increase by 213 every time x increases by 1 year. Therefore
the population grows by 213 inhabitants per year.

14 752 is the y-intercept. This is where x = 0 and this happens in the year
2000.7 From this we deduce that the population of the city was 14 752 7Since the year 2000 lies 0 years after the

year 2000.inhabitants in the year 2000.

Example 2.14
Here we look at the same model as in example 2.13,

N (x) = 213x +14.752 .

How much does the population grow in a 10 year period?

From the formula we see that the population grows by 213 per year. In a
10 year period the increase in population will therefore be

10 ·213 = 2130

inhabitants.



18 Linear Functions

Example 2.15
A company produces a certain amount of products. The cost of produc-
tion is a fixed cost of DKK 2000 and a cost per item of DKK 17.

This means the total cost of production is a function of the number of
items produced. The formula is

c(x) = 17x +2000 ,

where x is the number of items produced and c(x) is the total cost of
production.

Example 2.16
The average temperature in West Greenland depends on the latitude,[3]

T (x) =−0.732x +46.1 ,

where T is the average temperature (in ◦C) and x is the latitude.

This means that the average temperature in West Greenland decreases by
0,732◦C per degree of latitude.

A quick interpretation of the number 46.1 would be that it is the temper-
ature at latitude 0 degrees, i.e. at the Equator. However, the model only
applies to West Greenland, so this interpretation does not make sense.

It is therefore not possible to give a meaningful interpretation of the
number 46.1.

2.4 LINEAR REGRESSION

When we have a series of data points (measurements), we sometimes
have a situation like the one in figure 2.4 where the data points do not lie
exactly on a straight line—but do so approximately.

1

100

y = 39.8x +266.4

x

y

Figure 2.4: A series of data points and the
straight line that is a best fit.

Since the points do not lie exactly on the line, it would be wrong to use
theorem 2.7 to calculate a formula. Depending on the choice of points to
use, we would get very different results for the formula.

Instead, we use a method called linear regression to determine which
straight line is “closest” to all of the points. This method is built in to
most spreadsheets and mathematical computer programs. We input the
data points, and the program calculates the equation. The equation in
figure 2.4 is found in this way.

The method involves finding the line which is closest to all of the points.
The distance is defined as the square sum D of the vertical distance from
the line to the points. In figure 2.5 this distance is

D = d 2
1 +d 2

2 +d 2
3 +d 2

4 .
d1

d2

d3
d4

x

y

Figure 2.5: We minimise the square sum
D = d2

1 +d2
2 +d2

3 +d2
4 .

This sum contains more terms, the more data points we have. The best fit
for a line is the one which minimises D . It is possible to derive formulas
to calculate the equation for this line, but it is tedious work best left to a
computer.
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3.1 PRELIMINARY CONCEPTS

The word percent comes from the latin centum, which means “hundred”,
so percent means “per hundred”. So e.g. 3% means “3 per hundred”, i.e. 3
hundredths or, to put it another way,

3% = 3

100
= 0.03 .

In calculations, we can therefore always replace the symbol % by a division
by 100.1 1We should always do this because it re-

moves a lot of confusion concerning the
meaning of % in the calculation.If we want to write a certain number as a percentage, we perform the

opposite calculation. E.g.

0.72 = 0.72 · 100

100
= 0.72 ·100

100
= 72

100
= 72% .

In this calculation, we multiply the number 0.72 by 100
100 , which is equal to

1.2 The calculation looks a bit elaborate; if we notice that 100
100 is actually 2A number does not change when it is mul-

tiplied by 1—not even if the 1 is written as
100
100 .

100%, we can instead write

0.72 = 0.72 ·100% = 72% .

Here, we multiply 0.72 by 100%, which is just another way of multiplying
by 1.

We often use the idea of percent to talk about fractions of a given quantity.
The following theorem shows how to calculate percentages:

Theorem 3.1

p% of a given quantity A is

p% · A = p

100
· A .

Example 3.2
How much do you save if the price of a £80 jacket is lowered by 30%?

You will save 30% of £80, i.e.

30% ·£80 = 30

100
·£80 = 0.3 ·£80 = £24.

19
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We may also want to know, how large a quantity is in relation to another.
This is done in the following way:

Theorem 3.3

To find out, how many percent the quantity A1 is in relation to the
quantity A0, we calculate

A1

A0
·100% .

Example 3.4
How large a percentage is 23 people out of 362?

To find out, we calculate

23

362
= 0.0635 = 0.0635 ·100% = 6.35% .

Example 3.5
How many percent is 465 out of 276?

Answer:
465

276
= 1.6848 = 1.6848 ·100% = 168.48% .

Here, we get a result above 100%, but this makes perfect sense since 465
is more than 276, so it has to be more than 100%.33It is important to remember that it is not

the size of the numbers that determines,
which number get divided by which; we
always divide by the number with which
we compare.

3.2 GROWTH IN PERCENT

In the preceding section, we looked at how to find a percentage of a given
quantity, and how to compare two quantities. Here, we look at growth.
How do we calculate the result if some quantity grows by a certain percent?
And how do we find out, how much larger (or smaller) some quantity is in
relation to another?

Calculated example If we want to add 12% to 140, we can do it in the
following way:

1. First, we find 12% of 140:

12% ·140 = 0.12 ·140 = 16.8 .

2. Then we add this to the original 140 and get:

140+16.8 = 156.8 .

This is actually a very elaborate way of doing it, especially if we want to
add a certain percentage severeal times—e.g. if we want to find out, how
much money is in a bank account after 1, 2, 3 or more years.

It turns out that the calculation above can be simplified quite a bit. If we
combine the two steps, we see that in order to add 12% to 140, we need to
calculate:

140+12% ·140 = 140+0.12 ·140 .
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If we factor out 140, we get

140+0.12 ·140 = 140 · (1+0.12) .

Here we se that in order to add 12% to 140, we need to multiply 140 by
1+0.12 = 1.12.

We therefore have the following definition:

Definition 3.6

1. The growth rate r is the fraction a certain quantity grows.

2. The growth factor a is defined by

a = 1+ r.

Here are two examples of how to calculate the growth rate and the growth
factor.

Example 3.7
If some quantity grows by 7.5% the growth rate is

r = 7.5% = 0.075 ,

and the growth factor is

a = 1+ r = 1+0.075 = 1.075 .

Example 3.8
If some quantity decreases by 11%, the growth rate is

r =−11% =−0,11 ,

and the growth factor is

a = 1+ (−0,11) = 0,89 .

Here, it is important to notice that when a quantity decreases, the growth
rate is negative.

If we want to add 12% to 140 like we did before, we calculate

140+12% ·140 = 140 ·1.12 .

This means that we actually just multiply 140 with the growth factor—
which in this case is a = 1.12.

From this we get

Theorem 3.9

If we want to add a percentage to a quantity A0, we get the new value

A1 = A0 ·a ,

where a = 1+ r is the growth factor.
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In calculations concerning growth in percent—or when we want to know
how much bigger/smaller a certain quantity is in relation to another—we
never use the growth rate r directly, but instead use the growth factor a.

In any given context, we usually know only the growth rate r . We therefore
need to calculate the growth factor a before proceeding with the calcula-
tions. If we instead are looking for a growth rate, we calculate the growth
factor, and then convert this to a growth rate (see figure 3.1).

r a

+1

−1

Figure 3.1: Conversion between growth rate
and growth factor.

Here is an example where we add a percentage to a given quantity, using
the theorem above:

Example 3.10
We want to add 25% VAT to an item, which costs DKK 399.96. What is the
final price of this item?

Here, the growth rate is r = 25% = 0.25. The growth factor is then

a = 1+ r = 1+0.25 = 1.25 .

The final price is therefore

399.96 ·1.25 = 499.95 .

So the item costs DKK 499.95.

Now we look at how to compare two quantities:

Example 3.11
The price of an item drops from DKK 179.95 to 139.95. How many percent
has the price decreased?

We can rewrite the formula A1 = A0 ·a as a = A1
A0

. Using this we calculate

a = A1

A0
= 139.95

179.95
= 0.7777 .

This is the growth factor, which means that the growth rate is

r = a −1 = 0.7777−1 =−0.2223 =−22.23% .

The price has therefore dropped by 22.23%.44In this example, we see clearly that we cal-
culate using the growth factor, but present
the growth rate in the conclusion.

Compound Interest

In the preceeding section, we explained how to add a certain percentage
to a given quantity. Sometimes we need to add a percentage several times.
E.g. if we deposit money into a bank account, how much money do we
have in 2, 3 or more years?

Calculated example If we deposit DKK 10 000 into a bank account at an
interest rate of 2.5% p.a.,5 how much money do we have after 5 years?5per annum, i.e. per year

According to theorem 3.9, we need to multiply the DKK 10 000 by the
growth factor a = 1+2.5% = 1.025 to find the amount of money after 1
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year. This amount we multiply by 1.025 to find the amount after 2 years,
etc. All in all, we need to multiply 10 000 by 1.025 five times:

10000 ·1.025 ·1.025 ·1.025 ·1.025 ·1.025 .

This means that we need to calculate

10000 ·1.0255 = 11314.08 ,

so after 5 years, we have DKK 11 314.08 in our account.

Adding interest in this way is called compounding. The formula for com-
pound interest is given in the following theorem.

Theorem 3.12: Compound interest

A quantity P (called the principal), which increases by a growth rate
of r per compounding period, increases to An after n periods, where

An = P ·an ,

and a = 1+ r is the growth factor. This formula can also be written as

An = P · (1+ r )n .

We can answer several types of questions using this formula. A few are
shown in the following examples.

Example 3.13
If we deposit $ 10 000 into a bank account, what does the interest rate
need to be p.a. for this amount to increase to $ 12 000 in 10 years?

Here we know the principal P = 10000, the amount A10 = 12000, and
the number of periods (years) n = 10. If we insert these values into the
formula for compound interest, we get

An = P ·an ⇒ 12000 = 10000 ·a10 .

Now we solve the equation, and get

12000 = 10000 ·a10 ⇔ 12000

10000
= a10 ⇔ 10

√
12000

10000
= a.

a is then

a = 10

√
12000

10000
= 1.0184 .

This is a growth factor, and we need the corresponding growth rate

r = 1.0184−1 = 0.0184 = 1.84% .

If we want $ 10 000 to increase to $ 12 000 in 10 years, the interest rate
needs to be 1.84% p.a.
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Example 3.14
In a certain city, the growth rate has been 3% per year for the last 20 years.
If there are 27 541 inhabitants in the city now, how many were there 12
years ago?

To solve this problem, we use the formula for compound interest and set
n =−12, since we are going back 12 years.

We have P = 27541, r = 3%, i.e. a = 1.03, and n =−12. The formula then
gives us the answer:

K−12 = 27541 ·1,03−12 = 19317 .

12 years ago, the city had 19 317 inhabitants.

Example 3.15
Denmark has 5.6 million inhabitants. The growth rate is currently about
0.4% per year.[2] If this rate stays constant, how many years will pass
before there are 6 million Danes?

In millions, K0 = 5,6. The growth factor is a = 1+0.4% = 1.004, and Kn = 6.
The number of years, n, is unknown. We insert the known quantities into
the formula for compound interest and get

Kn = K0 ·an ⇒ 6 = 5.6 ·1.004n .

We solve the equation:66Remember that the equation ax = b has

the solution x = log(b)
log(a) .

6 = 5.6 ·1.004n ⇔
6

5.6
= 1.004n ⇔

log
( 6

5.6

)
log(1.004)

= n ⇔

17.3 = n .

In 17.3 years, the population will be 6 million if the growth rate stays at
0.4%.

3.3 CHANGING COMPOUNDING PERIODS

In this section, we will see how to convert between growth factors (and,
by extension, growth rates) for different compounding periods, e.g. years
and months.

Calculated example If a given quantity increases by 0.5% monthly, how do
find the corresponding percentage increase per year?

The formula for compound interest tells us that in order to add interest to
P for one month, we need to multiply by the growth factor

amonth = 1+0.5% = 1.005 .

Now, if we go forward one year, this corresponds to 12 months. According
to the formula, we then need to multiply P by

a12
month = 1.00512 .
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The growth factor for one year is therefore

ayear = 1,00512 = 1,0617 .

This corresponds to the growth rate ryear = 1.0617−1 = 6.17%. A monthly
rate of 0.5% thus corresponds to an annual rate of 6.17%.

Generalising this calculation gives us the following theorem:

Theorem 3.16

If the annual growth factor is ayear, and the monthly growth factor is
amonth, then

ayear = a12
month .

This theorem may be extended to other conversions than the one between
months and years. The following examples illustrate this point.

Example 3.17
If some quantity P grows by 4% per year, how many percent does it grow
in 10 years?

The annual growth factor is a1 year = 1+4% = 1.04. We can then calculate
the growth factor for 10 years:

a10 years = a10
1 year = 1.0410 = 1.4802 .

This corresponds to a growth rate of

r10 years = 1.4802−1 = 0.4802 = 48.02% .

If a quantity grows by 4% per year, it will grow by 48.02% in 10 years.

It is also possible to use theorem 3.16 to convert from years to months—i.e.
in the opposite direction:

Example 3.18
If a bank pays 2.1% interest p.a., then what is the monthly interest rate?

First, we notice that since there are 12 months in a year, 1 month must
correspond to 1

12 of a year. Then we use theorem 3.16 like this:

amonth = a
1

12
year .

If we insert the annual growth rate ayear = 1+2.1% = 1.021, we get

amonth = 1.021
1

12 = 1.00173 .

An annual interest rate of 2.1% therefore corresponds to a monthly interest
rate of 0.173%.

3.4 AVERAGE GROWTH RATE

In every preceding section, we looked at a fixed growth rate. If the growth
rate changes, what is it then possible to say about the growth?
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Calculated example We deposit $ 1000 into an account. The money stays
in the account for 3 years, during which time the interest rate changes as
shown in table 3.1.Table 3.1: The interest ri and the growth

factor ai for an account over 3 years.

Year ri ai

1 2.7% 1.027

2 3.0% 1.030

3 1.5 % 1.015

To determine how much money is in the account after 3 years, we need
to know the corresponding growth factors. These are shown in the last
column of table 3.1.

Now we can calculate the amount:

K3 = K0 ·a1 ·a2 ·a3

= 1000 ·1.027 ·1.030 ·1.015 = 1073.68 . (3.1)

So after 3 years, we have $ 1073.68 in our account.

If the growth rate was fixed, what would it have to be in order for the
account to have the same balance after 3 years? This fixed growth rate is
an average growth rate.

To answer this question, we need to look at the formula for compound
interest. If we denote the average growth factor by a, then

K3 = K0 ·a3 .

Since this calculation must have the same result—K3 = 1073.68—as (3.1),
we must have

a3 = a1 ·a2 ·a3 .

From this we get
a = 3

p
a1 ·a2 ·a3 .

In this case, the average growth factor becomes

a = 3
p

1.027 ·1.030 ·1.015 = 1.02398 .

The corresponding average growth rate is

r = a −1 = 1.02398−1 = 2.398% .

In general, we have the following theorem:

Theorem 3.19: Average growth rate

If a quantity increases through n periods by the different growth
factors a1, a2, . . . , an , the average growth factor per period is

a = n
p

a1 ·a2 · · · · ·an .

The average growth rate is therefore

r = n
√

(1+ r1) · (1+ r2) · · · · · (1+ rn)−1 .

Example 3.20
The population of a town grows by changing rates in a 5-year period. The
growth rates and factors can be seen in table 3.2.

Table 3.2: Growth rate ri and growth factor
ai for the population in a town in year i .

i ri ai

1 2,2% 1,022

2 3,1% 1,031

3 −1,2% 0,988

4 4,2% 1,042

5 6,0% 1,060
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r3 is negative. This means that the population decreases in that year.

To find the average growth rate during the 5 years, we calculate the 5
growth factors (see table 3.2).

Now we can calculate the average growth factor:

a = 5
p

1.022 ·1.031 ·0.988 ·1.042 ·1.060 = 1.02832 .

The average growth rate during the 5 years is then

r = 1.02832−1 = 0.02832 = 2.832% .





4Exponential Functions

Definition 4.1

An exponential function is a function of the form

f (x) = b ·ax ,

where a and b are positive numbers.

The number a in definition 4.1 is called the growth factor1 and b is the 1This is exactly the same factor as in the
formula for compound interest An = P ·an .initial value.

We call b the initial value because the graph of the function intercepts the
y-axis at (0,b). This follows from the calculation

f (0) = b ·a0 = b ·1 = b .

A few graphs of exponential functions may be seen in figure 4.1. Graphs
of exponential functions do not intercept the x-axis, because the function
values are always positive, since ax is always positive if a is positive—no
matter which value x has.

1

1

f
g

x

y

Figure 4.1: The graphs of the two exponen-
tial functions f (x) = 2 · 1.4x and g (x) =
4 ·0.8x .

4.1 EXPONENTIAL GROWTH

If we compare the formula for an exponential function f (x) = b ·ax with
the formula for compound interest An = P ·an , we see that it is actually
the same formula (exchange An with f (x), n with x, and P with b). We
therefore expect the same type of growth.

1 2 3 4

y0

y0 ·a

y0 ·a2

y0 ·a3

x

y

Figure 4.2: Exponential Growth.

We therefore expect exponential functions to grow in such a way that we
multiply by the growth factor a, every time x increases by 1. This is shown
in figure 4.2. We have the following theorem:

Theorem 4.2

Let f be an exponential function. Every time x increases by ∆x, the
function value of f is multiplied by a∆x . In other words, when x
increases by a fixed amount, the function value increases by a fixed
percentage.

29
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Proof
If x increases from x1 to x2, the function value will increase from

y1 = f (x1) = b ·ax1

to

y2 = f (x2) = f (x1 +∆x) = b ·ax1+∆x = b ·ax1 ·a∆x = y1 ·a∆x .

The new function value y2 is exactly y1 ·a∆x , which proves the theorem.�

Example 4.3
In table 4.1, we see an example of exponential growth. Here, the function
is f (x) = 4 · 2x , and every time x increases by 3, the function value is
multiplied by 23 = 8.

Table 4.1: Growth of f (x) = 4 ·2x .

x y

−3 0,5

0 4

3 32

6 256

+3

+3

+3

·23

·23

·23
Every time x increases by 1, the function value is multiplied by a1 = a.
The size of a therefore determines if an exponential function is increasing
or decreasing. We therefore have the following theorem2

2The theorem follows from the fact that if
we multiply any number with a number
larger than 1, the result will be larger than
the original number. Conversely, if we mul-
tiply by a number less than 1, the result will
be less than the original.

Theorem 4.4

For an exponential function f (x) = b ·ax we have:

1. If a > 1, the function is increasing.

2. If 0 < a < 1, the function is decreasing.

As we have seen, an exponential function grows by a fixed percentage for
a fixed increase in x. Therefore, it makes sense to define the growth rate

r = a −1 .

This number is often written as a percentage. For the growth rate, we have
the following theorem, which follows from theorem 4.4.

Theorem 4.5

For an exponential function f (x) = b ·ax , we have

1. if r > 0, the function is increasing,

2. if r < 0, the function is decreasing,

where r = a −1 is the growth rate.

We may use this to make mathematical models based on a certain growth
rate.

Example 4.6
In 2014, the population of Honduras was 8.6 million, and the growth rate
was 1.7%.[6] We can therefore describe the population of Honduras using
an exponential model with an initial value of 8.6 and a growth rate of 1.7%.

Since the growth rate is 1.7%, the growth factor is

a = 1+1.7% = 1+0.017 = 1.017 .
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Thus the population is given by the function

f (x) = 8.6 ·1.017x ,

where x is the number of years since 2014, and f (x) is the population (in
millions).

Example 4.7
A bacterial culture grows exponentially such that the number of bacteria
can be described by the function

B(t ) = 364 ·1.72t ,

where t is the time in hours, and B(t ) is the number of bacteria.

From this formula, we see that at the time t = 0 (initially) there are 364
bacteria. The growth factor is 1.72, i.e. the growth rate is

r = 1.72−1 = 0.72 = 72% .

Therefore the number of bacteria grows by 72% per hour.

4.2 CALCULATING THE FORMULA

If we know two points on the graph of an exponential function f (x) =
b ·ax , we are able to calculate the constants a and b in the formula (see
figure 4.3). P (x1, y1)

Q(x2, y2)

x

y

Figure 4.3: The graph of an exponential
function passes through the points P and
Q.

Theorem 4.8

If the graph of an exponential function f (x) = b ·ax passes through
the two points P (x1, y1) and Q(x2, y2), then

a = x2−x1

√
y2

y1
and b = y1

ax1
.

Proof
If P (x1, y1) is on the graph f (x) = b ·ax , then

y1 = b ·ax1 . (4.1)

Since Q(x2, y2) is also on the graph of f , we have

y2 = b ·ax2 . (4.2)

If we divide equation(4.2) by equation (4.1), we get

y2

y1
= b ·ax2

b ·ax1
⇔

y2

y1
= ax2

ax1
⇔

y2

y1
= ax2−x1 ⇔
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x2−x1

√
y2

y1
= a ,

which proves the formula for a.

To prove the formula for b, we solve equation (4.1) for b, and get

y1 = b ·ax1 ⇔ y1

ax1
= b .

This proves the formula for b. �

Example 4.9
If the graph of an exponential function f (x) = b ·ax passes through the
two points P (2,12) and Q(5,96), we have

x1 = 2, y1 = 12, x2 = 5 og y2 = 96 .

Now we use the formulas from theorem 4.8 to get

a = x2−x1

√
y2

y1
= 5−2

√
96

12
= 3
p

8 = 2 ,

b = y1

ax1
= 12

22 = 12

4
= 3 .

The formula of the function is therefore f (x) = 3 ·2x .

4.3 DOUBLING TIME AND HALF LIFE

According to theorem 4.2, an exponential function increases by a fixed
percentage if x increases by a fixed value. If we look at an exponentially
increasing function, it is therefore meaningful to investigate, exactly how
much x should increase for the function value to increase by 100%, i.e. to
double. This number is known as the doubling time T2.

The function value is multiplied by a∆x when x increases by ∆x. To deter-
mine T2, we must therefore find a value of ∆x, such that a∆x = 2, since
doubling amounts to multiplying by 2. Thus T2 is the solution to the
equation

aT2 = 2 .

The solution to this equation is33Remember that the equation ax = c ha-

has the solution x = log(c)
log(a) .

T2 = log(2)

log(a)
.

Figure 4.4 illustrates the meaning of the doubling time: Every time x
increases by T2, the function value is doubled. This applies only to expo-
nential functions.

x0 x0 +T2

y0

2 · y0

T2
x

y

Figure 4.4: When x increases by T2, the
function value is doubled.

The concept of doubling time makes no sense when we look at decreasing
exponential functions. Here we instead define the half life. The half life
T 1

2
is defined analogously to the doubling time. We now have
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Theorem 4.10

For an exponential function f (x) = b ·ax , we have

1. If f is increasing, the doubling time is T2 = log(2)
log(a) .

2. If f is decreasing, the half life is T 1
2
= log

(
1
2

)
log(a) .

Example 4.11
The exponential function f (x) = 3 · 1.7x has a growth factor of a = 1.7.
Therefore the doubling time is

T2 = log(2)

log(a)
= log(2)

log(1.7)
= 1.31 .

I.e. every time x increases by 1.31, the function value is doubled.

An increase from x = 5 to 6.31 will therefore double the function value,
and so will an increase from x = 100 to x = 101.31.

4.4 EXPONENTIAL REGRESSION

Exponential regression is a method for finding the exponential function,
whose graph is closest to a certain series of data points.

1

10

y = 5.37 ·1.68x

x

y

Figure 4.5: An exponential function found
using exponential regression.

This method is built into most spreadsheets and CAS tools. We input the
data points and obtain the formula for the exponential function, whose
graph best describes the behaviour of our data set. The equation in fig-
ure 4.5 is found in this way.





ANumbers and Arithmetic

Numbers are one of the corner stones of mathematics. Numbers are used
for many different purposes: For counting and measuring or to calculate
profit and debt.

In the next few sections, we look at different types of numbers and the
four arithmetical operations: addition, subtraction, multiplication and
division.

The first numbers we learn are the numbers we call natural numbers.
These are the numbers used for counting, i.e.

1,2,3,4,5,6,7,8,9,10,11,12,13, . . . .

If we want to express the notion of nothing, we use the number 0. However,
we do not place this among the natural numbers.

A.1 ADDITION

The simplest of the four arithmetical operations is addition. This opera-
tion does expresses the same idea as the word “and”.1 1The symbol + in all likelihood comes from

the word et which means “and” in latin.[1]
E.g. if we have a pile of 7 items and a pile of 11 items, we have a total of “7
items and 11 items”, i.e. 18 items. In mathematics we write

7+11 = 18 .

The two numbers 7 and 11 are called terms and the result 18 is called a
sum.

Since the sign + tells us to add the values, the order cannot matter. There-
fore we expect that

7+11 = 11+7 ,

which is true.

A.2 SUBTRACTION AND NEGATIVE NUMBERS

Using the natural numbers, we cannot express the idea of loss or debt. To
do this, we need the negative numbers.2 We begin by looking at negative 2The negative numbers are actually quite

a new invention in mathematics. Well into
the 18th century, some mathematicians be-
lieved that negative numbers did not actu-
ally exist.[4]
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whole numbers:
−1,−2,−3,−4,−5,−6, . . . .

In a way, every negative number is an “opposite number” of a positive
number. In mathematics we call this an inverse number (with respect to
addition). Adding a number and its inverse yields e.g. 33In the calculation, we write parentheses

around the number −3. We do this to show
that − is a sign, i.e. it belongs to the num-
ber −3. Generally, we may not write a sign
without parentheses directly after an arith-
metical operation.

3+ (−3) = 0 og (−3)+3 = 0 .

We may argue that −(−3) must be the inverse of −3 and that we therefore
must have

−(−3)+ (−3) = 0 .

But because 3+ (−3) = 0, we must also have

−(−3) = 3 .

This applies to all numbers (not just the number 3).

Using the negative numbers, we may define subtraction as adding the
inverse number. An example might be

8−2 = 8+ (−2) .

This also explains why the numbers are not directly interchangeable. 2−8
is not the same as 8−2 because the sign − actually belongs to the number
2. When we add, however, the order does not matter. Thus we can do as
follows

8−2 = 8+ (−2) =−2+8 .

Here we see that the sign − is always before the number 2.

The two numbers 8 and 2 in the calculation are called terms (as with
addition) while the result (6) is called a difference.

A.3 MULTIPLICATION

Multiplication may be viewed as an extension of addition since e.g.

7 ·4 =
7 times︷ ︸︸ ︷

4+4+4+4+4+4+4 = 28 .

Here, we see why the symbol “·” is called “times”.

For addition, we may easily argue that the order does not matter. This is
also the case for multiplication, though it may not be as obvious why e.g.
7 ·4 = 4 ·7. However, if we view the number 4 ·7 as the area of a rectangle
where one side is 4 and the other 7, exchanging the numbers 4 and 7 only
amounts to rotating the rectangle—hence the area stays the same. This is
illustrated in figure A.1.

7

4

4

7

Figure A.1: From this figure, we may argue
that 7 ·4 = 4 ·7.

The numbers that are multiplied (7 and 4) are called factors and the result
(28) is called the product of the two numbers.



A.4 Division 37

Sign

It is easy to show what happens when we multiply positive numbers. But
what happens if there are negative numbers involved?

Negative numbers may be interpreted as debt. In this light, a calculation
like −6 ·3 should be interpreted as a debt of 6 items multiplied by 3, i.e. a
debt of 18 items. Thus we have

−6 ·3 =−18 .

Since the order of multiplication does not matter, we must also have4 4Notice the parenthesis around −6. We
write this to indicate that the sign belongs
to the number 6 (and it is not optional).3 · (−6) =−18 .

From this, we see that multiplying a positive by a negative number yields
a negative number.

But what happens when we multiply two negative numbers? Here, we can
use the following argument: −2 · (−4) is the (additive) inverse of 2 · (−4).
And because 2 · (−4) =−8, we have

−2 · (−4) =−(−8) = 8 .

Hence, when we multiply two negative numbers, the result is positive.
The sign rules for multiplication are listed in table A.1.

Table A.1: Sign rules for multiplication.

Rule Example

(+) · (+) = (+) 2 ·3 = 6

(+) · (−) = (−) 2 · (−4) =−8

(−) · (+) = (−) (−3) ·5 =−15

(−) · (−) = (+) (−4) · (−2) = 8
A.4 DIVISION

If 2 people share 6 items, they get 3 each. The calculation we perform is a
division:

6

2
= 3.

The number which we divide (6) is called the divident, and the number
we divide by (2) is called the divisor. The result of a division is called a
quotient.

Division is the opposite of multiplication. The number we find in the
calculation above is the answer to the question: Which number do we
multiply by 2 to get 6?5 5This explains why we cannot divide by 0.

The result of the calculation 4
0 answers the

question: What do we multiply by 0 to get
4? But a number multiplied by 0 is always
0, i.e. a number multiplied by 0 can never
be 4. Therefore it makes no sense to divide
by 0.

The result of a division is not necessarily a whole number. We therefore
have to introduce some other numbers, namely fractions, i.e. numbers
like 1

2 , 5
3 and − 7

13 .

Fractions are not as easy to work with as whole numbers; how do we add,
e.g., 1

2 and 2
3 ? How we calculate with fractions can be deduced from what

is written above. However, there are quite a few things to deduce, so this
will be explained in a later section.

Sign

Division can be viewed as a form of multiplication. The calculation 6
2 = 3

may also be written as

6 · 1

2
= 3 .
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But if every division can be turned into a multiplication, the same sign
rules must apply.

Therefore e.g.

−20

5
=−4,

14

−2
=−7 og

−18

−6
= 3 .

The sign rules for division are listed in table A.2.

Table A.2: Sign rules for division.

Rule Example
(+)
(+) = (+) 6

2 = 3
(+)
(−) = (−) 10

−5 =−2
(−)
(+) = (−) −14

2 =−7
(−)
(−) = (+) −18

−3 = 6
Decimal Numbers

Numbers that are not whole are often written as decimal numbers instead
of fractions. En example of a decimal is the number 1.472.

In principle a decimal number is a sum of fractions, e.g.

1,472 = 1+ 4

10
+ 7

100
+ 2

1000
.

However, this is not something we have to think about when we use
decimals.

Actually, every number may be written as a decimal number. We have

1

2
= 0.5

1

3
= 0,333333333. . .

10

7
= 1.42857142857142857. . .

As we see from the last two numbers, we sometimes need an infinite
amount of decimals to write a number as a decimal number. For this
reason, a fraction is more precise than a decimal number.66This also applies to 1

2 . Even though this
can be written as 0.5, we are more precise
when we write 1

2 . If we write 0.5, it is im-
possible for a reader to see if the number
actually has an infinite amount of zeroes
after the 5, or if it is the result of a rounding
from e.g. 0.496.

What we also see from the decimal numbers above is that even though e.g.
10
7 cannot be written precisely as a decimal number, there is a recurring

pattern in the decimals. We write the same sequence of numbers over and
over. This is true for every fraction when we write it as a decimal number;
if a fraction is written as a decimal number it either has a finite amount of
decimals or the decimals while repeat the same pattern ad infitum. We
call these numbers rational numbers, i.e. numbers that can be written as
a ratio of two whole numbers.

Irrational Numbers

If we write a number as a decimal, we either get a finite amount of deci-
mals or an endlessly repeating pattern. From this follows that a decimal
number without any pattern in the decimals cannot be written as a frac-
tion.

But is it even possible to conceive a number, which cannot be written as
a fraction? It turns out that there are infinitely many of such numbers, a
well-known example is the number π—the ratio of the circumference and
the diameter of a circle. To 20 decimal places, we have

π= 3,14159265358979323846. . . .
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Here there is no pattern in the decimals, and there never will be, no matter
how many decimals we calculate.

These numbers, which cannot be written as fractions, are called irrational
numbers. The rational and the irrational numbers collectively make up
the real numbers. If we view numbers as points on a number line, every
point on the line corresponds to a real number.

We can now group numbers into different sets:

The natural numbers, which we use for counting: 1,2,3,4, . . ..

The whole numbers, including the negatives: . . . ,−3,−2,−1,0,1,2, . . ..

The rational numbers, which are numbers that may be written as frac-
tions.7 7The whole numbers are also rational be-

cause every whole number can be written
as a fraction; e.g. 4 = 8

2 and −5 = −15
3 .The real numbers, i.e. all numbers.

A.5 POWERS AND ROOTS

4+4+4 can be written as 4 ·3. Similarly, a shorthand exists for e.g. 5 ·5 ·5 ·5.
Since we multiply four 5’s, we instead write 54. I.e.8 8In 54, the number 5 is called the base and

the number 4 is called the exponent.

54 =
4 times︷ ︸︸ ︷

5 ·5 ·5 ·5.

54 is called “5 raised to the power 4” or “the 4th power of 5”.

The opposite calculation is called a root of number. E.g. we may calcu-
lateNotice that it is not called the “2nd root” but the square root and we
do not write the number 2. I.e. we write

p
49 and not 2

p
49.

4
p

81 the 4th root of 81,
3
p

125 the cube root of 125,
5
p

32 the 5th root of 32,
p

49 the square root of 49.

The results of these calculations are

4
p

81 = 3 because 34 = 81
3
p

125 = 5 because 53 = 125
5
p

32 = 2 because 25 = 32
p

49 = 7 because 72 = 49 .

There are a lot of rules we can use when we do calculations with powers
and roots; these are described in a later chapter.

A.6 ORDER OF OPERATIONS

When we calculate e.g. 7+5 ·32, we need to know in which order to do the
different steps. Do we add first 7 and 5 or do we calculate first 32?
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Therefore we have rules that describe the order, in which we calculate.
This ensures that everybody gets the same (correct) result from a certain
calculation.99The order of operations is the one that

makes sense logically. We multiply before
we add because 4 ·3 = 4+4+4. Therefore

2+4 ·3 = 2+4+4+4 ,

and we therefore have to multiply first (un-
less we want to rewrite every multiplication
as an addition).

Theorem A.1: The order of operations

When we do a calculation, the arithmetical operations are performed
in the following order:

1. First we calculate powers and roots.

2. Then we multiply and divide.

3. And lastly we add and subtract.

This order can only be changed using parentheses. If some part of a
calculation is in a parenthesis, we view this as a separate calculation,
which must be done first.

Some examples of calculations are

Example A.2
Using the order of operations:

2 ·17−4 ·23 = 2 ·17−4 ·8 First we calculate 23.

= 34−32 Then we multiply.

= 2 And subtract.

Example A.3
An example including parentheses:

(6+2) ·5+3 ·p16 = 8 ·5+3 ·p16 The parenthesis is calculated first.

= 8 ·5+3 ·4 Then the roots.

= 40+12 Then we multiply.

= 52 And lastly, we add.

Hidden Parentheses

Some calculations actually include parentheses, which are not obviously
there.

In a calculation such as 3+17
10 , we have to calculate 3+17 first—before we

divide. When we write a division, there are actually parentheses around
both the numerator and the denominator, and this must be taken into
account when we calculate.

The same applies to roots. In e.g.
p

17−8, we must calculate 17−8 before
we apply the square root.

Example A.4
In the following examples, it is shown explicitly where the hidden paren-
theses are:

3+9

4
= (3+9)

4
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50

7−2
= 50

(7−2)

72+1 = 7(2+1)

p
7+9 =

√
(7+9)

5−2
p

8 = (5−2)
p

8 .

These are important to remember.

The example above does not cover every possible case. But as a rule, if
something looks like a separate part of a calculation, it probably is.
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A fraction is a number of equal parts of a whole. We write fractions as two
whole numbers above and below a straight line:

2

3
,

7

4
,

−13

29
.

The top number is called the numerator, and the bottom number is called
the denominator.1 1The numerator and the denominator are

always whole numbers, possibly negative.
However, the denominator cannot be 0.The fraction 2

3 is the number we get when we divide 1 whole into 3 parts
and take 2 of them. A fraction may also be interpreted as the exact result
of dividing the numerator by the denominator.

If we want to visualise a fraction, we may do so by using the number line
(see figure B.1).

0 1 2 3

2
3

0 1 2 3

5
2

Figure B.1: The two numbers 2
3 and 5

2 on
the number line.

B.1 EQUIVALENT FRACTIONS

If we interpret a fraction as the result of dividing the numerator by the
denominator, a fraction may actually be equal to a whole number. This is
true if the denominator divides the numerator,2 2Alternatively, whole numbers may be

seen as fractions with denominator 1, e.g.
8 = 8

1 .10

5
= 2 ,

36

9
= 4 ,

−27

3
=−9 .

Even if this is not the case, we can sometimes write the fraction with a
smaller numerator and denominator (simplifying the fraction). This is
possibly if a whole number exists, which divides both the numerator and
the denominator.

This situation is illustrated in figure B.2. Here we see that 4
6 = 2

3 . In the
fraction 4

6 , the number 2 divides the numerator and the denominator.
Since a fraction is, in a way, a ratio between the numerator and the de-
nominator, its size does not change if we divide the numerator and the
denominator by the same number. We therefore have

4

6
= 4

/
2

6
/

2
= 2

3
.

0 1

4
6

0 1

2
3

Figure B.2: From the two number lines, we
see that 4

6 = 2
3 .

43
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This does not change the value of the fraction. The number is exactly the
same as before, we just write it using smaller numbers for the numera-
tor and the denominator—and it is always easier to work with smaller
numbers.

Example B.1
A few examples of this kind of reduction are:

15

36
= 15

/
3

36
/

3
= 5

12
,

24

56
= 24

/
8

56
/

8
= 3

7
,

27

18
= 27

/
9

18
/

9
= 3

2
.

If dividing by the same number in the numerator and the denominator
does not change the value of the fraction, we may also multiply.3 If we do3It is important to remember that we have

to divide or multiply by the same num-
ber in the numerator and the denomina-
tor. Otherwise we change the value of the
fraction.

this, the numerator and the denominator become larger, and this does
not seem very useful. But it turns out to useful indeed when we need to
add fractions—see the section below.

Example B.2
If we multiply 3

4 by 5 in the numerator and the denominator, we get

3

4
= 3 ·5

4 ·5
= 15

20
.

Multiplying 8
5 by 3

3 yields

8

5
= 8 ·3

5 ·3
= 24

15
.

B.2 ADDITION AND SUBTRACTION

It turns out that we can only add fractions if they have the same denomi-
nator. If this is the case, we just add the numerators. E.g.

2

5
+ 4

5
= 2+4

5
= 6

5
.

This is illustrated in figure B.3.

0 1
6
5

2
5

4
5

Figure B.3: The calculation 2
5 + 4

5 = 6
5 illus-

trated on the number line.
It is not possible to add fractions with different denominators. Nonethe-
less, we would like to have method for adding e.g. 1

4 and 2
3 . If we can only

add fractions when they have the same denominator, we need a method
for producing equal denominators.

We do this by using the method described in the above section. We multi-
ply the fraction 1

4 by 3 in the numerator and the denominator and multiply
2
3 by 4. We then get

1

4
+ 2

3
= 1 ·3

4 ·3
+ 2 ·4

3 ·4
= 3

12
+ 8

12
= 11

12
.

Here both fractions end up with the numerator 12; they can then be
added.
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In this calculation we multiply the first fraction with the denominator of
the second, and vice versa. This always works.4 4But it is not always necessary. Sometimes

smaller numbers exist which also yield a
common denominator.Example B.3

A few examples of additions involving fractions:

1

3
+ 1

2
= 1 ·2

3 ·2
+ 1 ·3

2 ·3
= 2

6
+ 3

6
= 5

6
,

7

4
+ 2

11
= 7 ·11

4 ·11
+ 2 ·4

11 ·4
= 77

44
+ 8

44
= 85

44
,

3

5
+ 1

10
= 3 ·2

5 ·2
+ 1

10
= 6

10
+ 1

10
= 7

10
.

In the last calculation, we see that the common denominator is not the
product of the two original denominators, but instead the smallest num-
ber, which both denominators divide.5 5Usually, we try to calculate the result us-

ing the smallest numbers possible—simply
because it is easier.

If we want to subtract fractions, we can use the exact same method. We
can only subtract fractions if they have a common denominator. E.g.

8

13
− 3

13
= 8−3

13
= 5

13
.

If the two fractions do not have a common denominator, we multiply the
numerator and denominator of each fraction to give them a common
denominator.

Example B.4
Three examples of subtracting fractions:

4

3
− 2

5
= 4 ·5

3 ·5
− 2 ·3

5 ·3
= 20

15
− 6

15
= 14

15
,

7

8
− 1

2
= 7

8
− 1 ·4

2 ·4
= 7

8
− 4

8
= 3

8
,

2

3
− 4

5
= 2 ·5

3 ·5
− 4 ·3

5 ·3
= 10

15
− 12

15
= −2

15
.

It is, by the way, good practice to simplify the result as much as possible.

B.3 MULTIPLICATION AND DIVISION

The area of a rectangle is the product of its length and width. Therefore
the product of two numbers can be interpreted as the area of the cor-
responding rectangle. From this we see that 4

5 · 2
3 must be the area of a

rectangle, whose length is 4
5 and whose width is 2

3 . Figure B.4 shows the
result of this multiplication; we have

4

5
· 2

3
= 8

15
.

1

1

4
5

2
3

Figure B.4: Here we see that 4
5 · 2

3 = 8
15 .

Analysing the figure, we see that the number of coloured rectangles (the
numerator of the result) is the product of the two numerators (4 and 2).
The total number of small rectangles, which make up the area 1, can be
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found by multiplying the two denominators (5 and 3). This means that
we have

4

5
· 2

3
= 4 ·2

5 ·3
= 8

15
.

From this argument we see that we multiply fractions by multiplying their
numerators and their denominators.

Example B.5
A few multiplications involving fractions:

3

2
· 5

7
= 3 ·5

2 ·7
= 15

14
,

4

9
· 7

11
= 4 ·7

9 ·11
= 28

99
,

1

3
· 5

2
· 13

7
= 1 ·5 ·13

3 ·2 ·7
= 65

42
.

The final arithmetical operation is division. We use the following calcula-
tion as an example:

4

7

/2

5
.

Before we analyse this calculation, we first note that 66The fraction we get by exchanging the nu-
merator and the denominator is called the
reciprocal of the original fraction. 2

5
· 5

2
= 2 ·5

5 ·2
= 10

10
= 1 .

Now, if we multiply the original calculation 4
7

/2
5 by 1, we do not change

the result. Therefore we write

4

7

/2

5
·1 .

But since 2
5 · 5

2 = 1, we might as well write

4

7

/2

5
·
(

2

5
· 5

2

)
.

The order in which we multiply and divide does not matter. We can
therefore move the parenthesis and write(

4

7

/2

5
· 2

5

)
· 5

2
.

Inside the parenthesis, we now have 4
7 divided by 2

5 and then multiplied
by 2

5 . Since division and multiplication are opposite operations, this does
not change the number 4

7 . Therefore we might as well remove it and just
write (

4

7

)
· 5

2
,

which is the same 4
7 · 5

2 .

All the way through this argument, we have looked at the same calculation.
We therefore conclude that

4

7

/2

5
= 4

7
· 5

2
.

Thus we may change a division by a fraction into a multiplication by the
reciprocal fraction.
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Example B.6
A few examples:

3

8

/7

5
= 3

8
· 5

7
= 15

56
,

1

2

/11

5
= 1

2
· 5

11
= 5

22
,

7

6

/ 3

13
= 7

6
· 13

3
= 91

18
.

B.4 FRACTIONS AND WHOLE NUMBERS

If a calculation involves whole numbers as well as fractions, the easiest
way to proceed is to write the whole numbers as fractions (with denomi-
nator 1), e.g.

8 = 8

1
, 12 = 12

1
og −3 = −3

1
.

Now the calculations only involve fractions, and we may use the methods
described above.

Example B.7
In this example, we look at the calculation 2+ 3

4 . If we write the number 2
as a fraction, we get

2

1
+ 3

4
.

Now we need a common denominator, so we multiply the numerator and
the denominator of the first fraction by 4:

2

1
+ 3

4
= 2 ·4

1 ·4
+ 3

4
= 8

4
+ 3

4
= 11

4
.

The result of this addition is 11
4 .

Example B.8
The result of the division 4

3

/
5 can be found by writing the number 5 as the

fraction 5
1 . Then we have

4

3

/5

1
= 4

3
· 1

5
= 4

15
.

B.5 SIGN

Calculations involving fractions with negative numbers in the numerator
and/or the denominator are done in exactly the same way as divisions
since a fractions is, in essence, a form of division.

If we divide a positive number by a negative number, or vice versa, the
result is negative. Therefore we have

−6

11
= 6

−11
.

Usually we write the sign outside the fraction, i.e.

− 6

11
.
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A negative sign outside the fraction means that the fraction itself is neg-
ative. Since we get the same result if the negative sign is written on the
numerator or the denominator, it does not matter where we write it (as
long as there is only one negative sign).

If both the numerator and the denominator have a negative sign, the
resulting fraction is actually positive, i.e.

−13

−7
= 13

7
.

If we are presented with a calculation involving numerous multiplications
and divisions, we can determine the sign of the result by remembering
that every pair of negative signs “vanishes”. If the amount of negative
signs is even, the result is therefore positive; if the amount of negative
signs is odd, the result is negative.
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In this chapter, we look at some of the rules for powers and roots. First,
we look at powers where the exponent is a whole number. This is then
expanded to exponents, which are negative numbers or fractions.

C.1 INTEGER EXPONENTS

Raising a number to a power is defined in the following way:1 1In the calculation 35, we call the number
3 the base and the number 5 the exponent.

35 =
5 times︷ ︸︸ ︷

3 ·3 ·3 ·3 ·3 .

Roots are the opposite operation, e.g.

4
p

16 = 2, because 24 = 16 .

If we multiply two powers that have the same base, we may do this

72 ·74 =
2+4 = 6 times︷ ︸︸ ︷

7 ·7︸︷︷︸
2 times

·7 ·7 ·7 ·7︸ ︷︷ ︸
4 times

= 76 .

Dividing two powers that have the same base yields this:

45

43 = 4 ·4 ·4 ·4 ·4

4 ·4 ·4
= 4 ·4 = 42 ,

i.e.
45

43 = 45−3 .

If we have two consecutive powers we get

(24)3 =
4 ·3 times︷ ︸︸ ︷

(2 ·2 ·2 ·2︸ ︷︷ ︸
4 times

) · (2 ·2 ·2 ·2︸ ︷︷ ︸
4 times

) · (2 ·2 ·2 ·2︸ ︷︷ ︸
4 times

) = 24·3 = 212 .

Now we have seen what happens when we combine powers with the same
base. Next, we examine what happens when we combine powers with the
same exponent.

49
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Multiplying two powers with the same exponent yields e.g.

53 ·23 = 5 ·5 ·5 ·2 ·2 ·2 = 5 ·2 ·5 ·2 ·5 ·2 = (5 ·2) · (5 ·2) · (5 ·2) = (5 ·2)3 .

Division leads to

74

34 = 7 ·7 ·7 ·7

3 ·3 ·3 ·3
= 7

3
· 7

3
· 7

3
· 7

3
=

(
7

3

)4

.

All of these calculations may be generalised. Thus we obtain these 5 power
rules:

Theorem C.1

If m and n are two natural numbers, and a and b are two arbitrary
numbers, we have

1. am ·an = am+n .

2. If a is not 0, and m > n, then am

an = am−n .

3. (am)n = am·n .

4. an ·bn = (a ·b)n .

5. If b is not 0, then an

bn = ( a
b

)n .

C.2 RATIONAL EXPONENTS

In this section, we look at exponents that are not positive integers. This
raises an interesting question: We know what 54 means, but how do we
interpret e.g. 2−7 or 3

1
4 ?

We assign a meaning to calculations such as these by demanding that the
rules in theorem C.1 must be true, no matter which values we assign to
the exponents. It turns out that it is only possible for the rules to be true,
if we define powers with negative or fractional exponents in a certain way.

If, e.g., we calculate 50, rule 2 in theorem C.1 yields

50 = 52−2 = 52

52 = 1 .

The base here is 5, but it could have been any number. From a similar cal-
culation we can just as easily show that 70 = 1. We can therefore generalise
this to any number.22Except 0—because we cannot divide by 0.

If the exponent is negative, we can use the same rule to obtain3
3Here we use that we have just shown that
50 = 1, 60 = 1, 430 = 1, etc.

6−3 = 60−3 = 60

63 = 1

63 .

This calculation can also be performed using other numbers. Thus we
find e.g. 13−7 = 1

137 . The argument works for any base but 0.

If the exponent is a fraction, we use rule 3 in theorem C.1 to calculate e.g.
(8

1
3 )3. This yields

(8
1
3 )3 = 8

1
3 ·3 = 81 = 8 .
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But we also know that4 4Because roots are the opposites of powers.

(
3
p

8)3 = 8 .

Therefor
8

1
3 = 3

p
8 .

This explains how to interpret the calculation if the exponent is 1
2 , 1

7 or 1
73 ;

but it does not tell us what to do if the numerator of the fraction is not 1.

Here we instead look at the calculation

4
5
7 = 45· 1

7 = (45)
1
7 = 7

√
45 .

If the power rules must apply to all numbers, we need the following defi-
nition:

Definition C.2

1. a0 = 1 (if a 6= 0).

2. a−n = 1
an (if a 6= 0).

3. a
p
q = q

p
ap .

For rational exponents, we have the same rules as for integer exponents,5 5It was this that led us to the definition C.2.

so we have the following theorem:

Theorem C.3

We have the following rules

1. ax ·ay = ax+y .

2. (ax )y = ax·y .

3.
ax

ay = ax−y .

4. ax ·bx = (a ·b)x .

5.
ax

bx =
( a

b

)x
.

Since roots can be calculated by raising to a fractional power, we also have
the following theorem:6 6The two rules follow from e.g.

3p
5 · 3p

2 = 5
1
3 ·2

1
3 = (5 ·2)

1
3 = 3p

5 ·2

7p4
7p11

= 4
1
7

11
1
7

=
(

4

11

) 1
7 = 7

√
4

11
.

Theorem C.4

If a > 0 and b > 0 then

1. x
p

a · x
p

b = x
p

a ·b.
2.

x
p

a
x
p

b
= x

√
a

b
.

In theorem C.4, there are no rules for the expressions x
p

a · y
p

a og
xpa
ypa

. This

is because in these two cases it is always easier to write the roots as powers
before reducing.

If we really want to, it is possible two deduce two formulas. This is left as
an exercise for the reader.





DAlgebra

Algebra as a subject is about the rules that apply when we calculate. In
mathematics we sometimes need to use numbers, whose values we do
not know. These numbers are referred to as unknowns. Instead of the
unknown number, we write a letter, e.g. x, y , a or A.1 1It is important to remember that we dis-

tinguish between upper and lower case
letters–i.e. a and A are not the same num-
ber.

If a calculation involves unknowns, we cannot calculate a final result. But
we may sometimes be able to reduce or simplify the calculation. This
makes the calculation easier when we finally get to know the values of the
unknowns.

Since e.g.
5+5+5 = 3 ·5 ,

we know that
x +x +x = 3 · x ,

no matter which value x has. Similarly, we have

8 ·8 ·8 ·8 = 84 ,

so
x · x · x · x = x4 .

Hence algebraic rules may be used to simplify calculations and formulas
to make them easier to work with.

The algebraic rules we use here are no different from the usual arithmeti-
cal rules—i.e. for calculations involving numbers. This is because the
letters above are numbers. There is, however, one small difference: In
algebraic expressions we do not necessarily write the multiplication sign
if omitting it does not lead to confusion.2 Therefore 2When calculating 7 ·3, the multiplication

sign is necessary–since 73 is not the same
as 7 ·3. But we do not need the sign when
we write 7x.

4p = 4 ·p

3x y = 3 · x · y

5w2 = 5 ·w2

2y3z = 2 · y3 · z

7ab2 = 7 ·a ·b2

2(x + y) = 2 · (x + y)

(5−x)(2−x) = (5−x) · (2−x) .
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D.1 LIKE TERMS

If we add x and x, we get 2x. Therefore the following is also correct:

3x +4x =
3 terms︷ ︸︸ ︷

x +x +x+
4 terms︷ ︸︸ ︷

x +x +x +x = 7x .

If the letters are the same, we may add the numbers (or subtract them).

Example D.1
A few examples of adding or subtracting like terms.

2x +5x = 7x

5p2 +11p2 = 16p2

4y +7y +2y = 13y

8x y −3x y = 5x y

7w3 −15w3 =−8w3 .

Terms such as 2x and 5x are called like terms. If we add two like terms, we
add the numbers.3 The terms are only like terms if the letters are exactly3If we subtract, we use a similar rule.

the same. This means we cannot add e.g. 2a and 4b.

Example D.2
Since we can only add like terms, we have

3x −8y +6x = 3x +6x −8y = 9x −8y

4w +7u −w +5uw = 4w −w +7u +5uw = 3w +7u +5uw

−3y +4z +5y − z =−3y +5y +4z − z = 2y +3z

4x +3x2 +2x = 4x +2x +3x2 = 6x +3x2 .

From this example, we see that 4x and 3x2 are not like terms. This is
because the letters have to be exactly the same—and x and x2 are not
raised to the same power.44However, 3ab and ba are like terms, since

the order of multiplication does not mat-
ter, i.e. ba = ab. The same argument also
applies to e.g. x y2 and y2x; but not y x2,
since here the wrong number (x instead of
y) is squared.

D.2 PARENTHESES

When we simplify expressions, we often use the following 3 rules, which
apply to addition and multiplication..

The commutative law: a +b = b +a og a ·b = b ·a.

The associative law: a + (b + c) = (a +b)+ c og a · (b · c) = (a ·b) · c.

The distributive law: a · (b + c) = a ·b +a · c

The commutative law merely states that the order of addition or multipli-
cation does not matter. The associative law states that some parentheses
are irrelevant, e.g.

8x + (3x +6x) = (8x +3x)+6x .

The parenthesis here is irrelevant. We might as well just write

8x +3x +6x .
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The sum of these three terms is 17x.

If a parenthesis is preceded by a “+”, we can just remove the parenthesis.
This is not true if it is preceded by a “−”. Here we need the distributive law
to find out how to proceed.

The distributive law follows from the argument sketched in figure D.1, and
it tells us how to multiply a number with a sum.

b + c

b c

a

Figure D.1: The area of the entire rectangle
is a · (b + c), but we can also find the area
as the sum of the areas of the two smaller
rectangles, i.e. a ·b + a · c. Since it is the
same area, we must have a · (b+c) = a ·b+
a · c.

If we remember that −x = (−1)x, we may deduce that

a − (b + c) = a + (−1)(b + c) = a + (−1)b + (−1)c = a −b − c .

If a parenthesis is preceded by a “−”, we can therefore remove the paren-
thesis if we change the sign of every term inside the parenthesis.

Example D.3
A few examples of how to remove parentheses:

x + (8−2x) = x +8−2x ,

8y − (y +3) = 8y − y −3 ,

5t + (6+2t ) = 5t +6+2t ,

7p − (1−6p) = 7p −1+6p .

If we need to multiply a number and a sum, we also use the distributive
law.

Example D.4
Some examples of multiplying a number with a sum or a difference:

2(x +5) = 2x +2 ·5 = 2x +10 ,

x −8(5+x) = x + (−8) ·5+ (−8)x = x −40−8x ,

y(3+ y) = 3y + y2 .

A more advanced example might be:

5−ab(3b +a) = 5+ (−ab) ·3b + (−ab)a = 5−ab ·3b −aba

= 5−3abb −aab = 5−3ab2 −a2b .

It would also be of interest to know how to multiply two sums—i.e. a
calculation such as (a +b)(c +d). Here we use the distributive law twice
to obtain

(a +b)(c +d) = a(c +d)+b(c +d) = ac +ad +bc +bd .

As we can see, every term in the first parenthesis is multiplied by every
term in the last parenthesis. We can illustrate this in the following way:

(a +b)(c +d) = ac +ad +bc +bd .

All the rules involving parentheses are summed up in the following theo-
rem:
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Theorem D.5

For calculations involving parentheses we have:

1. a + (b + c) = a +b + c.

2. a − (b + c) = a −b − c.

3. a(b + c) = ab +ac.

4. (a +b)(c +d) = ac +ad +bc +bd .

Factoring

Sometimes it is a good idea to use the distributive law “backwards”. Theo-
rem D.5(3) then becomes

Theorem D.6

For the three numbers a, b and c, we have

ab +ac = a(b + c) .

Rewriting an expression in this way is called factoring,. We begin by
identifying a term, which divides every term in the expression. E.g.

12x +18y = 6 ·2x +6 ·3y = 6(2x +3y) .

Here 6 divides every term in the original expression.

Example D.7
Examples of factoring could be

5x +15z = 5x +5 ·3y = 5(x +3y) ,

7a +ab = a(7+b) ,

3pq −5pq2 = 3pq −5pq ·q = pq(3−5q) .

The advanced example where we factor out 2x y , is

2x2 y +4x y2 −6x y = 2xx y +2 ·2x y y −3 ·2x y

= 2x y · x +2x y ·2y −2x y ·3 = 2x y(x +2y −3) .

Factoring is a useful tool in many situations. As an example we look at a
fraction that can be simplified after factoring:

6x +9

12
= 3(2x +3)

12
= 3(2x +3)

/
3

12
/

3
= 2x +3

4
.

D.3 QUADRATIC MULTIPLICATION FORMULAS

When we multiply two parentheses, we multiply every term in the first
parenthesis with every term in the last. If some of the terms are equal, we
can simplify the resulting expression.

Two examples are55In theses calculations we use throughout
that ab = ba.
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(a +b)2 = (a +b)(a +b) = aa +ab +ba +bb = a2 +b2 +2ab ,

and

(a −b)2 = (a −b)(a −b) = aa +a(−b)+ (−b)a + (−b)(−b) = a2 +b2 −2ab .

If we add the terms in the first parenthesis and subtract them in the last,
we get

(a +b)(a −b) = aa + (−b)a +ba + (−b)b = a2 −b2 .

Collectively, these calculations yield the following theorem:

Theorem D.8

A square of a sum:

1. a2 +b2 +2ab = (a +b)2.

A square of a difference:

2. a2 +b2 −2ab = (a −b)2.

A difference of two squares:

3. a2 −b2 = (a +b)(a −b).

Example D.9
The formulas may be used in this manner:

x2 +49+14x = x2 +72 +2 ·7x = (x +7)2 ,

4p2 −25q2 = (2p)2 − (5q)2 = (2p +5q)(2p −5q) ,

9a2 +36−36a = (3a)2 +62 −2 ·3a ·6 = (3a −6)2 .

Example D.10
Sometimes we can simplify fractions, even if at first it looks impossible:

x2 +25−10x

4x −20
= (x −5)2

4(x −5)
= x −5

4
.





EEquations

An equation consists of two calculations separated by an equals sign. The
equals sign may be viewed as the statement that the two calculations yield
the same result.

An unknown number (the unknown)1 is present in at least one of the 1An equation might contain more than one
unknown, but in the simplest case there is
only one.

two calculations. A solution to the equation is a number, such that the
statement is true when the number is inserted in place of the unknown.

Example E.1
An equation could be

5x −9 = 2x .

The two calculations are 5x −9 and 2x. The equation states that these
calculations yield the same result.

x = 3 is a solution to the equation, since the two sides of the equation
yield

5 ·3−9 = 6 (left hand side, 5x −9),

2 ·3 = 6 (right hand side, 2x),

when we insert 3 in place of x. I.e. the two calculations yield the same
result (6), when x = 3.

On the other hand, x = 7 is not a solution, since

5 ·7−9 = 36 ,

2 ·7 = 14 .

Here the two sides yield different results.

E.1 SOLVING AN EQUATION

Solving an equation consists of finding those numbers that are solutions
to the equation.2 This involves a simple technique. 2It is possible for equations to have more

than one solution; it is also possible to have
equations that have no solutions.The two sides of the equations are calcutions that yield the same result if

we insert a solution in place of the unknown. E.g.

2 ·4+3 = 11 and 5 ·4−9 = 11 ,
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which means that x = 4 is a solution to the equation33Both sides yield 11 when we insert 4 in
place of x.

2x +3 = 5x −9 . (E.1)

But the equation
2x +3+9 = 5x −9+9

must have the same solution. The calculations are not the same as before,
so each side no longer yields 11; but the results on either side are still
equal, since we added the same number to both sides. Now when we
insert x = 4, we get

2 ·4+3+9 = 20 and 5 ·4−9+9 = 20 .

So if we add the same number to both sides of an equation, we get a new
equation—but one with the same solution as the previous equation.

This reasoning also works for subtraction, multiplication, etc. We there-
fore have the following theorem:

Theorem E.2

If we carry out the same arithmetical operation on both sides of an
equation, we get a new equation with the exact same solutions.

The equation (E.1) might be solved in the following manner:

2x +3 = 5x −9 Equation (E.1)

2x +3+9 = 5x −9+9 Add 9 to both sides.

2x +12 = 5x Reduce

2x +12−2x = 5x −2x Subtract 2x from both sides.

12 = 3x Reduce.

12

3
= 3x

3
Divide by 3 on both sides.

4 = x Reduce.

The last line is also an equation, but is an equation that is easy to solve.
The solution to the equation 4 = x is x = 4—an this is also the solution to
the original equation.44The point of adding, subtracting etc. is

to get to an equation, which gives us the
solutions directly. We may use whichever operation we want to, but it is absolutely neces-

sary that we always use the exact same operation on both sides of the
equation.55It is, however, never permitted to multiply

by 0, since then the equation is reduced to
0 = 0, which is always correct—and then
it is not possible to find solutions to the
original equation.

When we use an operation on both sides of an equation, it is important to
remember to use the operation on the entire side and not just a part of it.
See the examples below.

Example E.3
If we want to multiply by 2 on both sides of the equation 1

2 x +3 = 8, we
need to use parentheses:

1
2 x +3 = 8 ⇔ 6
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2 · (1
2 x +3

)= 2 ·8 ⇔
x +6 = 16 .

If we finish solving the equation, we find the solution x = 10.
6The sign ⇔ means “if and only if”. This
means that the two statements on each
side of the arrow are logically equal, i.e. one
of the is true only if the other one is true
and vice versa.

Example E.4
If we want to solve the equation x2 +4 = 13, we might be tempted first to
take the square root on both sides. This yields

x2 +4 = 13 ⇔
√

x2 +4 =p
13 .

Here, we cannot reduce the left hand side, since we need to add before we
take the square root—and we cannot do this, because we do not know the
value of x.

It turns out that it is a better idea to first subtract 4 to get

x2 +4 = 13 ⇔ x2 = 9 .

This equation is easy to solve. Its two solutions are x =−3 and x = 3.7
7Remember that (−3)2 = 9, since the prod-
uct of two negative numbers is positive.
Therefore x = −3 is also a solution to the
equation.

Testing a solution

If we are given a solution to an equation, or we want to check whether a
solution is correct, we may test the solution. We simply insert the solution
into both sides of the equation and see if we get the same result.

Example E.5
Is x = 2 a solution to x3 −3 = 2 · x +1?

The left hand side yields

23 −3 = 8−3 = 5 .

The right hand side yields

2 ·2+1 = 4+1 = 5 .

When we insert x = 2, the two sides yield the same result. Therefore x = 2
is a solution to the equation.

Example E.6
Is x = 3 a solution to the equation 4x

x+1 = 5?

The left hand side yields
4 ·3

3+1
= 12

4
= 3 .

This is not equal to 5, which is the right hand side. Therefore x = 3 is not a
solution.

How about x =−5? Here the left hand side yields

4 · (−5)

−5+1
= −20

−4
= 5 .

This is equal to the right hand side, so x = 5 is a solution.
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E.2 THE ZERO PRODUCT RULE

If we multiply by 0, the result is always 0. On the other hand, we cannot
multiply two non-zero numbers and get 0 as a result. Therefore, if the
result of a multiplication is 0, at least one of the numbers involved must
be 0. This leads us to the following theorem:

Theorem E.7: The Zero Product Rule

If a product is 0, at least one of the factors is 0:

a ·b = 0 ⇔ a = 0 ∨ b = 0 .

If one side of an equation is 0, and the other side is a product, we can use
this theorem to solve the equation.

Example E.8
What are the solutions to the equation (x −3) · (x +2) = 0?

On the right hand side, we have 0, and on the left hand side the product
of x −3 and x +2. According to the zero product rule, at least one of these
factors must be 0, i.e.

x −3 = 0 or x +2 = 0 ,

which leads to the solutions

x = 3 or x =−2 .

Example E.9
The equation (x +2)(x −4)(x +1) = 0 can be solve using the zero product
rule:8

(x +2)(x −4)(x +1) = 0 ⇔
x +2 = 0 ∨ x −4 = 0 ∨ x +1 = 0 ⇔

x =−2 ∨ x = 4 ∨ x =−1 .
8The sign ∨, which we use below, means
“or”.

Sometimes we can use the zero product rule if we are able to rewrite one
side of the equation as a product.

Example E.10
The equation x2 −5x = 0 can be solved in this manner:

First we factor out x

x · (x −5) = 0 ,

and then we use the zero product rule

x = 0 ∨ x −5 = 0 .

Therefore the equation has the two solutions

x = 0 ∨ x = 5 .
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E.3 EXPONENTIAL EQUATIONS

An exonential equation is an equation, where the unknown is an exponent.
E.g.

3x = 7 (E.2)

is an exponential equation. This type of equation may be solved using the
function log.9 9“log” stands for logarithm. E.g. log(3) is

called the logarithm of 3.
The equation E.2 has the solution10

10The result of the calculation
log(7)
log(3) is

found on a calculator.x = log(7)

log(3)
= 1.771 .

We have the following theorem:

Theorem E.11

The exponential equation
ax = c ,

where a and c are positive numbers, has the solution

x = log(c)

log(a)
.

Example E.12
The equation

4x = 15

has the solution

x = log(15)

log(4)
= 1.953 .

Example E.13
To solve the equation 5 ·6x +13 = 138, we need to first get an equation of
the right form:

5 ·6x +13 = 138 ⇔
5 ·6x = 125 ⇔

6x = 25 .

Now we may solve the equation using theorem E.11:

x = log(25)

log(6)
= 1.796 .

E.4 TWO EQUATIONS IN TWO UNKNOWNS

In the previous two sections, we only looked at equations in one unknown.
An example of an equation in more unknowns is

3x − y = 4 .

Here there are two unknowns, x and y . If we have one equation in two
unknowns, there is an infinite amount of pairs (x, y) of solutions to the
equation.
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E.g.

x = 5, y = 11 : 3 ·5−11 = 4

x = 1, y =−1 : 3 ·1− (−1) = 4 .

But if we have two equations in two unknowns, there is exactly one pair of
numbers, which solve both equations.1111There are a few exceptions, which are

described below.
Example E.14
The two equations

5x − y = 3 and 2x +4y = 10

have the solution x = 1 and y = 2 because

5 ·1−2 = 3 and 2 ·1+4 ·2 = 10 .

No other values of x and y solve both equations.

Two equations in two unknowns may also be called a system of equations.
The system of equations in the example above has only one solution.
Some systems of equations have more than one solution or no solution at
all.

Example E.15
The two equations

x + y = 2 and 3x +3y = 6 ,

have an infinite amount of solutions.

This is the case because the second equation is actually the same as the
first multiplied by 3. Therefore the two equations have the exact same
solutions, and a pair (x, y), which solves the first equation, also solves the
second.

Solving a system of equations consists of finding the pair(s) of numbers,
which solve(s) the system. Below we describe two methods.

The Method of Substitution

Solving two equations in two unknowns via the method of substitution is
done by solving for one of the unknowns in the first equation and inserting
the found expression in the second. Doing this results in an equation with
just one unknown.

Example E.16
To solve the system of equations

2x + y = 7 og 5x −3y = 12 ,

we solve for y in the først equation. We get

2x + y = 7 ⇔ y = 7−2x . (E.3)
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Next, we insert this expression in the second equation

5x −3y = 12 ⇒ 5x −3
(
7−2x

)= 12 .

We now solve this new equation:

5x −3(7−2x) = 12

5x −21+6x = 12

11x −21 = 12

11x = 12+21

11x = 33

x = 3 .

From (E.3), we have y = 7−2x, i.e.

y = 7−2 ·3 = 1 .

Thus the solution to this system of equations is x = 3 and y = 1.

Example E.17
The system12

x + y = 5 ∧ y2 = 9 ,

can be solve by first solving the last equation:

y2 = 9 ⇔ y =−3∨ y = 3 .

Each of these values of y have a corresponding value of x.

The first equation may be written as x = 5− y , which gives us these two
values of x:

y =−3 ⇒ x = 5− (−3) = 8

y = 3 ⇒ x = 5−3 = 2 .

Therefore the system of equations has the following solution:(
x = 2 ∧ y = 3

) ∨ (
x = 8 ∧ y =−3

)
.

12The sign ∧ used below means “and”. This
is an “inclusive and”, which means that the
two equations on each side of ∧ must be
true simultaneously.

The Method of Elimination

Another method for solving two equations in two unknowns is the so-
called “method of elimination”. This method only works if both equations
can be written in the form

ax +by = c ,

where a, b og c are three numbers.

The general idea is to rewrite the system of equations, such that either x
or y has the same coefficient in the two equations. When we have done
that, we can subtract the two equations to get a new equation with just
one unknown (eliminating the other).

We illustrate this method through some examples
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Example E.18
Here we have the system of equations{

3x + y = 11

−2x +5y = 21
.

We now multiply the first equation by 5 on both sides. Then we get{
15x +5y = 55

−2x +5y = 21
.

If we subtract these two equations13we get the new equation

(15x +5y)− (−2x +5y) = 55−21 ,

which we can reduce to get
17x = 34 .

The solution to this equation is x = 2.

Now we know the value of x, so we insert this into one of the equations
from the original system. Here we choose 3x + y = 11:

3 ·2+ y = 11 ⇔ y = 5 .

Thus the solution is x = 2 and y = 5.
13We are allowed to subtract two equations
because the left and right hand sides of
an equation are actually the same number.
Thus we actually subtract the same num-
ber from both sides.

In the above example, it was enough to rewrite one of the equations.
Sometimes we need to rewrite them both.

Example E.19
We rewrite the system of equations{

5x −4y = 22

−2x +8y = 4

by multiplying the first equation by 2 and the second by 5:14{
10x −8y = 44

−10x +40y = 20
.

The coefficients of x differ in signs, so we add the equations instead of
subtracting them:

(10x −8y)+ (−10x +40y) = 44+20 .

We reduce this equation and solve it:

32y = 64 ⇔ y = 2 .

We insert this value into one of the original equations, 5x −4y = 22:

5x −4 ·2 = 22 ⇔ 5x = 30 ⇔ x = 6 .

Therefore the solution to this system of equations is x = 6 and y = 2.
14We multiply each equation by the coeffi-
cient of x from the other equation.
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coordinate system, 9

D
decimal number, 38
decreasing function, 14, 29
denominator, 43
difference, 36
distributive law, 54
divident, 37
division, 35, 37

sign, 38
divisor, 37
doubling time, 32

E
eksponentiel

vækst, 29
equal fractions, 43
equation, 59

solving graphically, 12
system of, 64, 65

exponent, 39, 49
exponential

equation, 63
function, 29
regression, 33

F
factor, 36, 62
factoring, 56
fraction, 37, 43

addition, 44
division, 46
multiplication, 45
sign, 47
subtraction, 45

function, 10
exponential, 29
linear, 13

function value, 10

G
graph, 9

intersection, 11
growth

exponential, 29
growth factor, 21, 22, 29
growth rate, 21, 22, 30

average, 25, 26

H
half life, 32

I
increasing function, 14, 29
initial value, 29
intercept, 13, 14
intersection, 11
inverse number, 36
irrational numbers, 39

L
like terms, 54
linear

function, 13
growth, 16
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regression, 18

M
multiplication, 35, 36, 54

sign, 37
multiplikation, 54

N
natural numbers, 39
negative tal, 35
numerator, 43

O
order of operations, 39
origin, 9

P
parenthesis, 40

hidden, 40
percent, 19

comparison, 20
compound interest, 23

power, 39, 49
rational exponent, 51
rules, 50, 51

product, 36, 62
proportionality, 8

constant, 8
direct, 8
inversely, 8

Q
quotient, 37

R
rational numbers, 38, 39
real numbers, 39
regression

exponential, 33
linear, 18

root, 39, 49

S
slope, 14
square sum, 18
subtraction, 35
sum, 35
system of equations, 64, 65

T
term, 35, 36

U
unknown, 59

V
variable, 7

dependent, 8
independent, 8

W
whole numbers, 39

X
x-axis, 9

Y
y-axis, 9



FRACTIONS

Equivalent fractions (1)
a

b
= a

/
k

b
/

k

(2)
a

b
= k ·a

k ·b

Addition (3)
a

b
+ c

d
= a ·d

b ·d
+ b · c

b ·d

Subtraction (4)
a

b
− c

d
= a ·d

b ·d
− b · c

b ·d

Multiplication (5)
a

b
· c

d
= a · c

b ·d

Division (6)
a

b

/ c

d
= a

b
· d

c

POWERS AND ROOTS

(7) a0 = 1

Negative exponent (8) a−n = 1

an

Fractional exponent (9) a
p
q = q

p
ap

Same base (10) ax ·ay = ax+y

(11)
ax

ay = ax−y

(12) (ax )y = ax·y

Same exponent (13) ax ·bx = (a ·b)x

(14)
ax

bx =
( a

b

)x

Same root (15) x
p

a · x
p

b = x
p

a ·b

(16)
x
p

a
x
p

b
= x

√
a

b

ALGEBRA

The commutative law (17) a +b = b +a

(18) ab = ba



The associative law (19) a + (b + c) = (a +b)+ c

(20) a(bc) = (ab)c

The distributive law (21) a(b + c) = ab +ac

The square of a sum (22) (a +b)2 = a2 +b2 +2ab

The square of a difference (23) (a −b)2 = a2 +b2 −2ab

The difference of squares (24) a2 −b2 = (a +b)(a −b)

EQUATIONS

Exponential equations (25) ax = c ⇔ x = log(c)

log(a)

FUNCTIONS

y is directly proportional to x (26) y = k · x

y is inversely proportional x (27) y = k

x

LINEAR FUNCTIONS

b

a > 0

a < 0
x

y

Linear function (28) f (x) = ax +b

Slope from two points
(x1; y1) and (x2; y2) on
the graph

(29) a = y2 − y1

x2 −x1

y-intercept (30) b = y1 −ax1

PERCENT AND INTEREST

The meaning of % (31) p% = p

100



Initial value K0
Final value K1

(32) K1 = K0 · (1+ r )

Growth factor (33) a = 1+ r

Growth rate (34) r = a −1

Compound interest formula (35) Kn = K0 ·an

(36) Kn = K0 · (1+ r )n

Average growth factor (37) a = n
p

a1 ·a2 · · ·an

Average growth rate (38) r = n
√

(1+ r1) · (1+ r2) · · · (1+ rn)−1

EXPONENTIAL FUNCTIONS

b

a > 1

0 < a < 1
x

y

Exponential function (39) f (x) = b ·ax (a > 0, b > 0)

Growth rate (40) r = a −1

Growth factor from
two points (x1; y1) og (x2; y2)
on the graph

(41) a = x2−x1

√
y2

y1

y-intercept (42) b = y1

ax1

Doubling time (43) T2 = log(2)

log(a)

Half life (44) T 1
2
= log

(1
2

)
log(a)
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