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1Combinatorics

Probability theory is a branch of mathematics which deals with �xing

numbers to random phenomena. These might be

• the roll of a dice,

• the winnings on a scratch ticket, or

• the height of a person chosen at random.

The probabilities are a measure of how often a phenomenon occurs, e.g.

how often we get 5 when we roll a dice.

1.1 In how many ways . . .

If we want to calculate probabilities, it is useful to have formulas which

allow us to answer the question “in how many ways is . . . possible?” We

can always write down every possibility and the count them all, but this is

usually quite cumbersome – especially if there are many ways in which

the given outcome might occur.

We therefore start with the following example:

Example 1.1 In a certain restaurant, we can choose between 3 starters, 4

main courses, and 2 desserts. If a menu consists of a starter, a main course,

and a dessert, how many menus can we put together?

If we draw a tree diagram of our possible choices, we get �gure 1.1.

When we count the lower branches of the tree, we �nd that there are 24

di�erent possible menus.

There is nothing wrong with �nding the answer by drawing trees and

counting, but the task quite quickly becomes a mountain of work if there

are more than a few choices. We might instead reason like this: For each
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Figure 1.1: A tree diagram of possible

menus. “S1” is starter no. 1, M1 is main

course no. 1, etc.
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6 Combinatorics

of the 3 starters, there are 4 main courses to choose from, and for each of

those, there are 2 possible desserts. This gives us

3 ⋅ 4 ⋅ 2 = 24

di�erent menus.

The calculation in the example shows what we call the multiplication
principle. Here, the number of possibilities of each partial choice (starter,

main course, dessert) are multiplied. The keyword here is “and”, because

we use the principle when we choose a starter and a main course and a

dessert. So, we have:

Theorem 1.2: Multiplication principle

If M contains m elements, and N contains n elements, then we can

choose an element of M and an element of N in

m ⋅ n

di�erent ways.

There is another principle called the addition principle – because we add.

We use this principle in situations like these:

Example 1.3 A poor student enters the restaurant from our previous

example. He can only a�ord one dish, so he has to choose between either

a starter, a main course, or a dessert. In this case, there are

3 + 4 + 2 = 9

possibilities to choose a dish because there are 9 dishes in total, and he can

only choose one.

The keywords with this principle are “either . . . or” because he has to choose

either a starter, or a main course, or a dessert.

So, we have

Theorem 1.4: Addition principle

If M contains m elements, and N contains n elements, we can choose

an element of M or an element of N in

m + n

di�erent ways.

1.2 Variations

Another question of interest is how to choose a number of elements from

a larger set. E.g. if we want to choose 3 elements from a set of 5, in how

many ways can we do this?
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To set up a general formula, we will need a bit of notation which allows us

to write the formulas in a simpler way.

De�nition 1.5

If n is a natural number, we de�ne n!,

n! = n ⋅ (n − 1) ⋅ (n − 2)⋯ 2 ⋅ 1 .

0! is de�ned to be 0! = 1.
The number n! is called “n factorial”.

Example 1.6 The number 6! is the number

6! = 6 ⋅ 5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1 = 720 .

As this calculation shows, n! quite quickly becomes a large number, even

for small values of n.

To answer the question above, we analyse the following examples:

Example 1.7 At a �lm night, 5 di�erent �lms are in play, but there is only

time to watch 3 �lms. In how many ways can we choose the 3 �lms if the

order in which they are shown matters?

In this case, we have 5 choices for the �rst �lm, 4 choices for the second

�lm (because one of the �lms has already been chosen), and 3 choices for

the third �lm. This gives us

5 ⋅ 4 ⋅ 3 = 60

di�erent ways of choosing the 3 �lms.

We can write the calculation in the example like this:

5 ⋅ 4 ⋅ 3 =
5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1

2 ⋅ 1
=
5!
2!
=

5!
(5 − 3)!

.

From this we deduce the following general formula:

Theorem 1.8

If we choose r elements out of n, we can do so in Vrn ways if the order

matters. The number Vrn is given by this formula:

Vrn =
n!

(n − r)!
.

In the cases, where n = r (i.e. where we investigate in how many ways

we can list all of the elements), we talk about permutations. The number

of permutations of a set is the number of ways in which the set might be

ordered.

Sometimes the term permutations is used about the number Vrn, and the

notation P(n, r) = Vrn is also used.
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1.3 Combinations

If the order does not matter, we have fewer ways of choosing a number of

elements of a larger set. If we want to choose 3 elements out of 5, we can

still count our way to an answer if we approach the problem systematically.

E.g. if we want to pick three letters from ABCDE, we get the possibilities

in table 1.2. So, there are 10 di�erent ways to choose 3 elements out of 5.

Table 1.2: The possibilities when choosing

three letters from ABCDE.

ABC ACD BCD CDE

ABD ACE BCE

ABE ADE BDE

poss

The reason why we have fewer possibilities is that when the order does

not matter, then e.g. ABC and CBA will be the same choice. When the

order does matter, we can choose 3 out of 5 in

V35 =
5!

(5 − 3)!
= 60

di�erent ways. These 60 possibilities fall in groups of 6 containing the same

3 elements. This is because 3 elements can be permuted in V33 = 6 di�erent

ways. So, when the order does not matter, 3 out of 5 may be chosen in

V35
V33

=
5!

(5 − 3)! ⋅ 3!
= 10

di�erent ways. We generalise this calculation to the following theorem:

Theorem 1.9

We can choose r elements out of n in Crn di�erent ways if the order

does not matter. The number Crn is given by

Crn =
n!

r! ⋅ (n − r)!
.

The number Crn is called the binomial coe�cient.

A lot of di�erent notation is used for the number of combinations. Besides

Crn, e.g. K(n, r) and (nr) are also used.

Example 1.10 In a deck of playing cards there are 52 cards. If we choose

5 of these, we can do so in

C552 =
52!

5! ⋅ (52 − 5)!
=

52!
5! ⋅ 47!

= 2 598 960

di�erent ways.



2Probability theory

As previously mentioned, probability deals with assigning numbers to ran-

dom phenomena. The �rst books about probability dealt largely with games

and gambling,[4] and the main concern was determining the probabilities

of di�erent outcomes of games.

An outcome is generally understood to mean the result of an “experiment”,

i.e. an event which can have several di�erent results.

2.1 What is probability?

If we roll a dice, the probability of getting a 5 will be
1
6 , but what does that

really mean? When we look at a regular six-sided dice, we assume that

nothing makes one outcome more likely than another, and that we can

�nd the probabilities by using this formula:

probability =
number of desired outcomes

number of possible outcomes

. (2.1)

In this case, we have a so-called a priori probability, i.e. the probabilities

are given prior to the experiment. We arrive at the value of the probability

by deducing it from the experiment.

We can also talk about frequentist probabilities. This is the probability we

get if we roll the dice a large number of times and calculate the relative

frequency of 5s.

As noted, the formula above only applies to situations where all of the

outcomes are equally likely. Therefore, it makes sense to try to describe

the situations where we wish to �nd the probability, in such a way that

the outcomes we describe are equally likely.

2.2 Probability spaces

If we roll a dice, there are 6 possibilities for the result. These possibilities

are listed in table 2.1. The 6 possibilities are equally likely, and they make

up the sample space S which is the set of all possible outcomes,

S = { , , , , , } .

Table 2.1: Possible outcomes when rolling

a dice.

s p

1
6
1
6
1
6
1
6
1
6
1
6

The sum of the probabilities of all of the outcomes is 1. The sample space S
and the related possibilities p are called a probability space (S, p). We have

the following de�nition:

9



10 Probability theory

De�nition 2.1

If S = {s1, … , sn} is a set of outcomes, and p1, … , pn are the related

probabilities such that

1. the numbers p1, … , pn are between 0 and 1, and

2. p1 + p2 + ⋯pn = 1,

then (S, p) is called a �nite
1
probability space.

1
“In�nite” probability spaces also exist, in

which the number of elements is in�nite

(e.g. “every whole number”), but they are

beyond the scope of this description.

If we want to calculate the probabilities p1, … , pn, it is easier if the sample

space is chosen in such a way that all of the outcomes are equally probable;

in this case we talk about a symmetric probability space. The good thing

about a symmetric probability space is that formula (2.1) applies. I.e. a

symmetric probability space is de�ned in the following way:

De�nition 2.2

If for a probability space (S, p) with n elements we have

P(s1) = P(s2) = ⋯ = P(sn) =
1
n
,

the probability space (S, p) is called a symmetric probability space.

Any subset of the sample space, i.e. a set containing some of the outcomes

in the sample space, is called an event. So, an event is a term used to

describe which outcomes we look at in a given situation (corresponding to

the “desired outcomes” in the formula 2.1).

Some possible events when we roll a dice are

E1 = { }
E2 = { , }
E3 = { , , } .

The event E1 corresponds to getting a 6, E2 corresponds to getting a 1 or a

2, and E3 corresponds to the rolling an odd number of eyes. All of these

events describe something that might happen when we roll a dice once.

Each event E has an associated probability P(E). We can describe the

distribution of probabilities by listing the outcomes and their probabilities

in a table. The probabilities associated with the roll of a dice are listed in

table 2.1.

We can calculate the probability of an event by adding the probabilities

of the outcomes which make up the event. For the three events described

above, we have

P(E1) = p6 = 1
6

P(E2) = p1 + p2 = 1
6 +

1
6 =

1
3

P(E3) = p1 + p3 + p5 = 1
6 +

1
6 +

1
6 =

1
2 .
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Here, p1 is the probability to roll a 1, etc.

When we calculate probabilities, we sometimes need to look a two (or

more) things happening at the same time. In these cases, we need to know

whether the events are so-called independent event. We have the following:

De�nition 2.3

If for two events A and B in a probability space (U , p) we have

P(both A and B) = P(A) ⋅ P(B) ,

the two events are called independent.

Here we give an example of two independent events, and two events that

are not independent:

Example 2.4 If we roll a dice twice, the events

A ∶ we get a 6 on the �rst roll

B ∶ we get a 2 on the second roll

are independent events because the result of the �rst roll does not in�uence

the result of the second roll.

We can �nd an example of events which are not independent by putting 5

black and 5 red balls in a jar, and then draw two of the balls. If we look at

the events

C ∶ we draw a black ball the �rst time

D ∶ we draw a red ball the second time ,

it is clear that they are not independent because the probability of the

second event depends on whether we drew a black or a red ball the �rst

time.

We use the formula above when we calculate the probability that two

events both happen. The probability that an event A or another event B
happens can also be calculated – in those cases where the two events have

no outcome in common (i.e. none of the outcomes in A may be part of B
and vice versa). In those cases, we have

P(A or B) = P(A) + P(B) .

2.3 Random variables

The three events E1, E2 and E3 above can also be described by so-called

random variables which links a number to the events we look at (i.e. “getting

a 6”, “getting a 1 or 2”, “getting an odd number”). The values of the random

variables X and Y are shown in table 2.2.

Table 2.2: Outcomes in the roll of a dice,

and the two random variables X and Y .

s P(s) X Y

1
6 1 0

1
6 2 1

1
6 3 0

1
6 4 1

1
6 5 0

1
6 6 1

The values of the random variables are chosen in such a way that they

describe the event as wekk as possible – in this case we look at the eyes on
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the dice, or whether they are even or odd. The numbers can actually be

chosen at random, but we will usually chose them so that they describe

the event in the best possible way. With the random variables X and Y ,

the event E1, E2 and E3 may also be written as

E1 = {X = 6} , E2 = {X ≤ 2} , E3 = {Y = 0} .

So, we can write the probabilities of the three events like this:

P(H1) = P(X = 6) , P(H2) = P(X ≤ 2) and P(H3) = P(Y = 0) .

In these examples, the concept of random variables may seem like an

unnecessary extra layer, because we can just count the probabilities. But

as soon as the situation gets a little more complicated, the idea makes a lot

more sense.

Example 2.5 If we roll two dice and look at the sum of the eyes, we

can write a sample space containing the numbers 2, 3, . . . , 12. But these

outcomes are not equally likely because we only get a 12 by rolling two 6s,

but we can get 5 by rolling either a 1 and a 4, or a 2 and a 3. But because

calculations are easier in a symmetric probability space, we instead analyse

the situation in the following way:

Table 2.3: The possible values of X : the

sum of the eyes when rolling two dice.

2 3 4 5 6 7

3 4 5 6 7 8

4 5 6 7 8 9

5 6 7 8 9 10

6 7 8 9 10 11

7 8 9 10 11 12

If we distinguish between the two dice by letting one of them be white and

the other black, the sample space S contains pairs (w, b) where w is the

eyes of the white dice and b is the eyes of the black dice, In total, there are

36 of such pairs, so the sample space contains 36 elements:

S =
{
( ; ) , ( ; ) , ( ; ) , ( ; ) , ( ; ) , ( ; ) ,

( ; ) , ( ; ) , ( ; ) , ( ; ) , ( ; ) , ( ; ) ,
( ; ) , ( ; ) , ( ; ) , ( ; ) , ( ; ) , ( ; ) ,
( ; ) , ( ; ) , ( ; ) , ( ; ) , ( ; ) , ( ; ) ,
( ; ) , ( ; ) , ( ; ) , ( ; ) , ( ; ) , ( ; ) ,

( ; ) , ( ; ) , ( ; ) , ( ; ) , ( ; ) , ( ; )
}

All of these outcomes are equally likely, i.e. the probability of one of the

outcomes is
1
36 . So, the probability of the pair ( ; ) which corresponds to

a white 1 and a black 6 is
1
36 .

We now de�ne the random variable X whose value is the sum of the eyes

of the two dice. The possible values of X are then the numbers from 2 to

12, and using table 2.3, we can write down the probability distribution of

X .

E.g. if we want to know the probability of getting 9 by rolling two dice,

we count the number of 9s in table 2.3 and multiply by
1
36 , which is the

possibility of a single outcome. There are four 9s, so

P(X = 9) = 4 ⋅
1
36

=
1
9
.

The entire probability distribution of X is listed in table 2.4.

Table 2.4: The probability distribution for

the sum of the eyes when rolling two dice.

x P(X = x)

2
1
36

3
1
18

4
1
12

5
1
9

6
5
36

7
1
6

8
5
36

9
1
9

10
1
12

11
1
18

12
1
36
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Example 2.6 If we toss a coin 3 times and count the number of “heads”,

we have 4 di�erent possible outcomes; we can get “heads” 0, 1, 2 or 3 times.

But these are not equally likely, so we should not chose them as outcomes.

Instead we de�ne the outcomes to be the actual possible sequences when

we toss a coin, i.e. combinations of “heads” and “tails”:

ttt, tth, thh, etc.

If we look at the number of “heads” in 3 tosses of a coin, we have three

outcomes which result in 2 “heads”. The event which contains these three

outcomes is

E = {hht, hth, thh} .

The sample space contains every possible outcome, i.e.

S = {hhh, hht, hth, thh, htt, tht, tth, ttt} .

Here we see that we have 8 equally likely outcomes.

We now let the random variable X be the number of “tails” in the three

tosses, and make a table of the outcomes and the values of the random

variable (see table 2.5). The event E mentioned above corresponds to X = 2.

Table 2.5: The values of the random vari-

able X for all possible outcomes of 3 tosses

of a coin.

s X

ppp 0

ppk 1

pkp 1

pkk 2

kpp 1

kpk 2

kkp 2

kkk 3
We see in the table that X = 2 for 3 outcomes, i.e.

P(X = 2) = 3 ⋅ 18 =
3
8 .

The entire probability distribution for the number of “heads” in 3 tosses of

a coin is listed in table 2.6.

Table 2.6: X ’s probability distribution.

x P(X = x)

0
1
8

1
3
8

2
3
8

3
1
8

We can also shoe the probability distribution as a bar chart. A bar chart of

the probability distribution in table 2.6 is shown in �gure 2.7.

0 1 2 3

0.1
0.2
0.3
0.4

x

P(X = x)

Figure 2.7: Bar chart of the probability dis-

tribution of X .

2.4 Mean and standard deviation

In many ways, probability theory is comparable to statistics, but instead

of observations and relative frequencies, we talk about outcomes and

probabilities. However, the methods are in many ways the same. E.g.

probability distributions can be illustrated with bar charts as it was done

in the example in the last section.

If we have a random variable and a probability distribution, we can therefore

also calculate the mean, variance and standard deviation.
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De�nition 2.7

For a random variable X which can assume the values x1, … , xn, the

mean �, the variance �2, and the standard deviation � is given by
2

� = E(X) =
n
∑
i=0

xi ⋅ P(X = xi)

�2 = Var(X ) =
n
∑
i=0
(xi − �)2 ⋅ P(X = xi)

� = �(X) =
√
Var(X ) .

2
The E in E(X) stands for “expectation

value”. The mean is also sometimes called

the expected value. We notice that the formulas are just like the ones used in statistics, but

with the relative frequencies fi replaced by the probabilities P(X = xi).

Example 2.8 If a random variable X counts the number of “heads” in 3

tosses of a coin, its probability distribution is given by table 2.6, and the

mean is

� = 0 ⋅
1
8
+ 1 ⋅

3
8
+ 2 ⋅

3
8
+ 3 ⋅

1
8
= 1.5 ,

the variance is

�2 = (0 − 1.5)2 ⋅
1
8
+ (1 − 1.5)2 ⋅

3
8
+ (2 − 1.5)2 ⋅

3
8
+ (3 − 1.5)2 ⋅

1
8
=
3
4
,

and the standard deviation is

� =
√
3
4
= 0.866 .

2.5 Discrete and continuous probabilities

If the sample space consists of a series of separate outcomes (like the ones

we have previously looked at), the probability spaces is called discrete.
When we roll a dice, we cannot get every number between 1 and 6, e.g.

we cannot get 1.9 or 2.7. The sample space is therefore discrete. Another

example would be a coin toss where we count the number of “heads”. Here,

we can get whole numbers, 1, 2, 3, . . .—but not e.g. 2.5. The methods we

use when we look at discrete probability spaces are similar to use we use

in ungrouped statistics.

However, if the outcomes can be any number between some minimum and

maximum values, we say that the probability space is continuous. Here we

use methods that are similar to those used in grouped statistics. In this

case, we calculate probabilities of intervals instead of probabilities of single

values.

Example 2.9 During an autumn day, the minimum tempeture is 0◦C, and

the maximum temperature is 4◦C. The temperature at a random time of

day is then a continuous random variable, because the temperature can

assume all values in the interval [0; 4].

If we assume that we have measured the temperature continuously during

the day, we can make a histogram which shows the distribution of temper-

atures, and a distribution curve which shows in what fraction of the day
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(a) Histogram.
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0.1

0.5

0.9

(1)
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(b) Distribution curve.
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0.1

0.5

0.9

P(X ≤ 2.25)
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(c) Probability density function.

1 2 3 4
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0.5

0.9

P(X ≤ 2.25)
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(d) Cumulative distribution function.

Figure 2.8: The relationship between his-

togram and distribution curve, and proba-

bility density function and cumulative dis-

tribution function.

the temperature was below a given value. The two diagrams might look

like �gure 2.8(a) and 2.8(b).

If we have measured the temperature continuously during the day, we

might make the intervals for the histogram and the distribution curve

smaller and smaller. We then imagine making the intervals “in�nitely

small” until we end up with the graphs of two continuous functions, see

�gure 2.8(c) and 2.8(d).

These two functions are called the probability density function and the

cumulative distribution function—usually abbreviated PDF and CDF. Just as

the area below a histogram equals the relative frequency of an interval, so

does the area below the PDF equal the probability of an event, and just as

the distribution curve is increasing from 0 to 1, so is the PDF.

As the example above shows, continuous random variables can be described

by their probability density functions or their cumulative distribution

functions. The probability that an outcome is less than a given value is

then found be calculating the area below the graph of the PDF up to this

value. But we can also �nd this probability directly from the graph of the

CDF. If the CDF of a continuous random variable X is called F , then we

have

P(X ≤ a) = F(a) .
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If we want to �nd the probability for an outcome in the interval [a; b], we

get

P(a ≤ X ≤ b) = P(X ≤ b) − P(X ≤ a) = F(b) − F (a) .

For continuous probability distributions we have:

Theorem 2.10

If X is a continuous random variable with cumulative distribution

function F , then

1. P(X ≤ a) = F(a)

2. P(X ≥ a) = 1 − F(a)

3. P(a ≤ X ≤ B) = F(b) − F (a) .

A special case is the probability for a speci�c outcome. This is always 0

because

P(X = a) = P(a ≤ X ≤ a) = F(a) − F (a) = 0 .

We arrive at this (somewhat counter-intuitive) result because when a ran-

dom variable is continuous its sample space contains an in�nite amount of

speci�c numbers. The probability of getting exactly one of those is then

in�nitely small, i.e. 0.

The calculus connection

Because we �nd the probabilities of events in a continuous probability space

by determining areas under graphs, we can calculate these probabilities by

integration. If we know integral calculus, we can de�ne probability density

functions like this:

De�nition 2.11

A probability density function f is a function such that f (x) ≥ 0 for all

x ∈ ℝ, and

∫
∞

−∞
f (x) dx = 1 .

The probability of an event is then given by

Theorem 2.12

Let X be a continuous random variable with probability density func-

tion f , and let the interval E = [e1; e2] be an event. Then the probability

P(E) of the event E is given by

P(E) = ∫
e2

e1
f (x) dx .

Because the value of the cumulative distribution function is given by F (a) =
P(X ≤ a), we de�ne cumulative distribution functions in the following

way:
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De�nition 2.13

Let X be a continuous random variable with probability density func-

tion f . Then the cumulative distribution function is given by

F (a) = ∫
a

−∞
f (x) dx .

For continuous random variables, we also calculate the mean and the

variance as integrals. We have the following de�nition:

De�nition 2.14

For a continuous random variable X with probability density function

f , the mean �, the variance �2, and the standard deviation � are given

by

� = E(X) = ∫
∞

−∞
x ⋅ f (x) dx

�2 = Var(X ) = ∫
∞

−∞
(x − �2) ⋅ f (x) dx

� = �(X) =
√
Var(X ) .





3The binomial distribution

The binomial distribution is a probability distribution which is used to

calculate the probability of getting a certain amount of successes in a series

of experiments. E.g. the probability of getting three 6s when rolling a dice

�ve times.

When we want to calculate the probability of this outcome, we start with an

experiment (called a trial) which we perform a number of times. Each time

the trial is performed, we have a probability of success p, and a probability

of failure 1 − p.
1 1

Failure is the opposite success, so the prob-

ability of success and the probability of fail-

ure must add up to 1.An example of a trial is the roll of a dice. The trial is then performed �ve

times. If success is getting a 6, then the probability of success is
1
6 (because

the probability of rolling a 6 in one roll of a dice is
1
6 ). The probability of

failure is then 1 − 1
6 =

5
6 which corresponds to the probability of getting

something else than a 6.

If we want to �nd the probability of rolling three 6s out of the �ve rolls, we

�rst need to consider that the three 6s can be obtained in di�erent ways.

The �rst three rolls might be 6s, or it might be the last three rolls; there

are a lot of di�erent ways of getting three 6s out of �ve. Therefore, to

determine the probability, we �rst need to determine in how many ways

we can get three 6s in �ve rolls.

Here we can use the binomial coe�cient (see theorem ??). Three 6s in �ve

rolls can be obtained in C35 = 10 di�erent ways.

One of the possibilities is getting 6s in the �rst three rolls. The probability

of getting one 6 is
1
6 . This has to happen the �rst three times. The fourth

and the �fth roll cannot be 6s, the probability of this is
5
6 . So, the total

probability of getting three 6s in the �rst three rolls and the something else

in the last two is

The �rst three⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
1
6
⋅
1
6
⋅
1
6

⋅

The last two⏞⏞⏞⏞⏞⏞⏞⏞⏞
5
6
⋅
5
6

= (
1
6)

3
⋅ (
5
6)

2
.

All of the ways in which we can get three 6s must be equally likely. If we

are interested in the probability of getting three 6s in �ve rolls (and not just

getting 6s on the �rst three), we have to multiply this probability by the

number of ways in which we can get three 6s, i.e. the probability becomes

10 ⋅ (
1
6)

3
⋅ (
5
6)

2
=
125
3888

≈ 0.0322 . (3.1)

19
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If we gather all of the calculations into one, we can write (3.1) like this

C35 ⋅ (
1
6)

3
⋅ (1 −

1
6)

5−3
. (3.2)

Here, we are only using the original numbers: The number of 6s (3), the

number of rolls (5), and the probability of getting a 6 in one roll (
1
6 ).

3.1 The general formula

We want to write down a general formula for the binomial distribution, we

de�ne the random variable X which counts the number of successes in n
trials. In each individual trial, the probability of success is p.

We then say that X is binomially distributed with number of trials n and

probability of success p, and we write X ∼ b(n, p). The probability of r
successes can the be calculated using the following formula which is a

generalisation of the calculation (3.2).

Theorem 3.1

If the random variable X is binomially distributed with number of

trials n and probability of success p, X ∼ b(n, p), the probability of r
successes is given by

P(X = r) = Crn ⋅ p
r ⋅ (1 − p)n−r .

Example 3.2 What is the probability of getting exactly four 1s in 15 rolls

of a dice?

The random variable which counts the number of 1s in 15 rolls is binomially

distributed with number of trials 15 and probability of success
1
6 , X ∼

b (15, 16). Therefore, the probability of getting four 1s is

P(X = 4) = C415 ⋅ (
1
6)

4
⋅ (1 −

1
6)

15−4

= 1365 ⋅ (
1
6)

4
⋅ (
5
6)

11
= 0.1418 .

So, there is a 14.18% chance of getting exactly four 1s in 15 rolls of a dice.

Example 3.3 On a little tropical island in the Paci�c, there is a �ood in

the summer every four years on average. So, the probability of a �ood

occuring during a single summer is
1
4 . During a 5-year period, they can

have everything from 0 to 5 �oods. The probability distribution is then

found by calculating P(X = 0), P(X = 1), . . . , P(X = 5).

E.g. we have

P(X = 3) = C35 ⋅ (
1
4)

3
⋅ (
3
4)

2
= 0.0879 .

So, this is the probability that a �ood occurs 3 times during a 5-year pe-

riod. The entire distribution is listed in table 3.1. A bar chart is shown in

�gure 3.2.

Table 3.1: The probability of r �oods in a

5-year period.

r P(X = r)

0 0.2373

1 0.3955

2 0.2637

3 0.0879

4 0.0146

5 0.0010

0 1 2 3 4 5

0.1

0.2

0.3

0.4

t

P(X = t)

Figure 3.2: The probability distribution of

X : Number of �oods during a 5-year period.
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As the table and the �gure show, it is most likely to have a �ood in one

year; but we can also see that there is rather large probability of not getting

any �oods at all during the 5 years. However, it is very unlikely (0.0010)

that they will have �oods every year during a 5-year period.

If we want to know the probability of at most one �ood during the 5 years,

we have to calculate

P(X ≤ 1) = P(X = 0) + P(X = 1) = 0.2373 + 0.3955 = 0.6328 .

So, it is very likely to get at most one �ood during the 5 years. However,

there is also a probability of

P(X > 1) = 1 − P(X ≤ 1) = 1 − 0.6328 = 0.3672

of getting more than one �ood during the 5 years.

3.2 Mean and standard deviation

The mean and standard deviation of a binomially distributed random vari-

able are given by the following formulas which we will not prove:[1]

Theorem 3.4

If the random variable X is binomially distributed, X ∼ b(n, p), then

the mean � and the standard deviation � are given by

� = np

� =
√
np(1 − p) .

Example 3.5 If we roll a dice 10 times and count the number of 5s, the

random variable representing this number is binomially distributed with

number of trials n = 10 and probability of success p = 1
6 .

The mean is then

� = n ⋅ p = 10 ⋅
1
6
≈ 1.667 .

So, if we roll a dice ten times, we will get 1.667 5s on average.

The standard deviation is

� =
√
np(1 − p) =

√
10 ⋅

1
6
⋅ (1 −

1
6)

= 1.179 .

Example 3.6 In example 3.3, we looked at a random variable with number

of trials 5 and probability of success
1
4 .

Here, the mean is

� = n ⋅ p = 5 ⋅
1
4
= 1.25 ,

and the standard deviation is

� =
√
np(1 − p) =

√
5 ⋅

1
4
⋅ (1 −

1
4)

= 0.9682 .
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3.3 Binomial test

James Bond is famous for wanting his martini “shaken not stirred”. But

can he really taste the di�erence? Assume that he drinks 16 martinis and

has two tell how the martinis were made, and that he gets it right 13 times.

How can we decide if this is an adequate number of right answers to know

that he is not just guessing?

The experiment itself consists if 16 repetitions of the trial decide whether
the martini is “shaken” or “stirred”. The binomial distribution is therefore at

the core of out assessment, and the test we are about to perform is called a

binomial test.

Before we do the test, we need to write down a so-called null hypothesis
which will provide us with a probability of success. Here, we choose the

null hypothesis

H0: James Bond cannot taste the di�erence between the two types of

martini.

We formulate the hypothesis in this way because this is what we can test.

We know what the probabilities are if he is merely guessing (then the

probability of success is
1
2 )—but we have no way of knowing what the

probability of success is if he can actually tell the di�erence.

Next, we choose a so-called signi�cance level which tells us when to reject

the null hypothesis. A typical choice is 5%. In the test, we then try to

investigate which results of the sample yield probabilities less than the

signi�cance level.

In our case, we investigate probabilities of the form

P(X ≥ k) ,

where k is a whole number. E.g. we have

P(X ≥ 11) = 0.105 = 10.5%
P(X ≥ 12) = 0.038 = 3.8% .

Here, we see that there is less than 5% probability of getting 12 or more

answers right. Therefore, so-called critical region is

{12, 13, 14, 16} .

The probability of this set is less then 5%, i.e. less than the chosen signi�-

cance level.

Because James Bond’s result lies in the critical region, there is less than 5%

probability to see this result if he merely guesses. So, we choose to reject
the null hypothesis. This means that we accept that he can taste how the

martini was made.

The test we performed is a so-called right-sided test because we test whether

his result is too large for him to just guess. In other situations, we might

want to test whether a given value is too small; in these situations we use

a left-sided test:
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Right-sided test In a right-sided binomial test with signi�cance level � ,

the critical region is

K = {k, k + 1, … , n} ,

where k is the smallest number so that P(X ≤ k) ≤ � .

Left-sided test In a left-sided binomial test with signi�cance level � , the

critical region is

K = {0, 1, … , k} ,

where k is the largest number so that P(X ≤ k) ≤ � .

Example 3.7 A company producing canned tomatoes promise that 98%

of the cans will arrive undamaged after delivery. A supermarket receives a

pallet of tomatoes with 960 cans. 25 of the cans are damaged.

To �nd out whether we should trust the companies claims, we perform a

left-sided binomial test. In this case, the null hypothesis is

H0: 98% of the cans are undamaged.

The binomial distribution then has n = 960 and p = 98%. At a signi�cance

level of 5%, we �nd

P(X ≤ 923) = 0.0468 = 4.68%
P(X ≤ 924) = 0.0711 = 7.11% .

So, the critical region is

K = {1, 2, 3, … , 921, 922, 923} .

935 of the cans are undamaged, and this number falls outside the critical

region. Therefore, we accept the null hypothesis. At a 5% signi�cance level,

we can trust the company’s claims.

In the test above, we tested whether James Bond can tell the di�erence

between two kinds of martinis by investigating whether the number of

right answers was large enough to reject the null hypothesis.

We can also do a two-sided test. Here we test whether the number is either

too large or too small. If we reject the null hypothesis in this case, we

conclude that he can tell the di�erence (but we cannot conclude that he

knows which is which).

Because the test is two-sided, we divide the signi�cance level by 2 (here

we get 2.5%) and investigate when P(X ≤ a) and P(X ≥ b) are larger than

2.5%. We have

P(X ≤ 3) = 0.0106 = 1.06%
P(X ≤ 4) = 0.0384 = 3.84%

og

P(X ≥ 12) = 0.0384 = 3.84%
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P(X ≥ 13) = 0.0106 = 1.06% .

In this case the critical region becomes

K = {0, 1, 2, 3} ∪ {13, 14, 15, 16} .

Generally, we �nd the critical region in a two-sided binomial test like this:

Two-sided test In a two-sided binomial test with signi�cance level � ,

the critical region is

K = {0, 1, … , a} ∪ {b, … , n} ,

where a is the largest number so that P(X ≤ a) ≤ �
2 , and b is the smallest

number so that P(X ≥ b) ≤ �
2 .

Example 3.8 In Wa�eworth Heights, the Protest Party received 17.2%

of the votes in the last communal election. In a opinion poll, where a

representative sample of 1000 people were asked, 243 people say that they

will vote for the party in the next election.

If we want to know whether the party’s share of voters has changes, we

perform a two-sided binomial test. The null hypothesis is then

H0: The percentage of votes for the party is 17.2%.

The binomial distribution then has n = 1000 and p = 17.2%. If the signi�-

cance level is � = 5%, then
�
2 = 2.5%. For the lower limit we �nd

P(X ≤ 148) = 0.0229 = 2.29%
P(X ≤ 149) = 0.028 = 2.8%

and for the upper limit

P(X ≥ 196) = 0.0259 = 2.59%
P(X ≥ 197) = 0.0214 = 2.14% .

From these calculations, we now see that the critical region is

K = {0, 1, … , 148} ∪ {197, 198, … , 1000} .

Because the number 243 falls in the critical region, we reject the null

hypothesis. So, the party’s share of voters has changed since the election.
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Many statistical measurements result in frequency distributions which

approximately follow the probability distribution we call the normal dis-

tribution. An example of this is the thickness of slices of bread cut on a

machine.

No machine can cut perfectly. Table 4.1 lists measurements for a machine

which is supposed to slice bread into slices with a thickness of 1 cm. Some

of the slices are too thick and some are too thin; but most of the slices seem

to have a thickness around 1 cm.

Table 4.1: Thickness of 100 slices of bread

sliced on a machine.

Thickness (cm) Number

0.55–0.65 2

0.65–0.75 4

0.75–0.85 6

0.85–0.95 9

0.95–1.05 14

1.05–1.15 16

1.15–1.25 15

1.25–1.35 10

1.35–1.45 10

1.45–1.55 8

1.55–1.65 6

Using the numbers in the table, we can �nd the mean x and the sample

standard deviation s for the thickness of the slices. We get

x = 1.151 and s = 0.249 .

Figure 4.2 shows a histogram of the distribution from table 4.1. The �gure

also shows the graph of the cumulative probabilities function of the normal
distribution with mean 1.51 and standard deviation 0.249. The graph of

the PDF is a bell-shaped curve which seems to �t quite nicely with the

measured values of the thickness of the slices.

0.5 1 1.5

0.5

1

1.5

(1)

(2)

Figure 4.2: Histogram of the thickness of

the slices.

If a continuous random variable X is normally distributed with mean � and

standard deviation � , we write X ∼ N (�, �). If X is normally distributed, it

has the following PDF:

De�nition 4.1

A random variable X is called normally distributed with mean � and

standard deviation � , X ∼ N (�, �), if it has the probability density

function

f (x) =
1

�
√
2π
e−

(x−�)2

2�2 .

Many phenomena result in normally distributed data. Some of them are:

• Measurement errors in experiments.

• The size of things that have been produced mechanically (like the

thickness of the slices of bread above).

• Biological variables such as height and weight.
1

1
However, many biological variables

are only approximately normally dis-

tributed and are actually log-normally

distributed[5].

The mean and the standard deviation change the shape of the curve. If you

change the mean, the curve moves in a horizontal direction. If the standard

25
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−1 1 2 3

0.2

0.4

0.6

0.8
� = −1 � = 1 � = 2

(1)

(2)

(a) Di�erent means.

−1 1 2 3

0.2

0.4

0.6

0.8 � = 1
2

� = 1
� = 2

(1)

(2)

(b) Di�erent standard deviations.

Figure 4.3: If the PDFs have the same

standard deviation but di�erent means, the

graphs are shifted horizontally. When they

have the same mean but di�erent standard

deviations, the width of the curve changes.

deviation gets less, the curve becomes narrower; if the standard deviation

gets larger, the curve will become wider (see �gure 4.3).

As with every continuous probability distribution, we �nd the probability

of a speci�c interval by determining the area under the graph of the PDF

in the given interval.

Example 4.2 A machine at a factory �lls 1 kg bags of sugar. The weight

of the bags is normally distributed with mean � = 1000 g and standard

deviation � = 25 g. The PDF is then

f (x) =
1√

2π ⋅ 25
⋅ e−

(x−1000)2
2⋅252 .

However, it is easier to calculate probabilities using the CDF, F .
2

E.g. the
2
It is not possible to write an algebraic ex-

pression for the CDF, but it is a part of most

CASs

probability to take a sample and get a bag which weighs between 950 and

975 g is

P(950 ≤ X ≤ 975) = F(975) − F (950)
= 0.1359 = 13.59% .

So, the probability of getting a bag which weighs a bit less than 1 kg is not

negligible.

Example 4.3 Here, we look again at the example with the slices of bread.

It turned out that the random variable equal to the width of the slices was

approximated quite well by a normal distribution with mean � = 1.151 and

standard deviation � = 0.249.

This allows us to answer questions like:

1. What is the probability of getting a slice of bread with a thickness

between 0.9 cm and 1 cm?

2. What is the probability of getting a slice of bread with a thickness of

more than 1.3 cm?

We can answer both by using the CDF to calculate the probabilities. The

probability of getting slice of bread with a thickness between 0.9 cm and

1 cm is

P(0.9 ≤ X ≤ 1) = F(1) − F (0.9) = 0.1154 .
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The probability of getting a slice of bread with a thickness of more than

1.3 cm is

P(X ≥ 1.3) = 1 − P(X ≤ 1.3) = 1 − F(1.3) = 0.2748 .

The areas which yield these probabilities are shown in �gure 4.4.

0.5 1 1.5

0.5

1

1.5

(1)

(2)

(a) P(0.9 ≤ X ≤ 1) = 0.1154.

0.5 1 1.5

0.5

1

1.5

(1)

(2)

(b) P(X ≥ 1.3) = 0.2748.

Figure 4.4: The probabilities that the thick-

ness of the slices fall in certain intervals are

given by areas below the PDF.

The graph of the PDF of the normal distribution is symmetricl around the

mean. The PDF is actually so well-behaved that we have the following

theorem, which we will not prove here.[3]

Theorem 4.4

If X is a normally distributed random variable with mean � and stan-

dard deviation � , then

P(� − � ≤ X ≤ � + �) = 0.6827
P(� − 2� ≤ X ≤ � + 2�) = 0.9545
P(� − 3� ≤ X ≤ � + 3�) = 0.9973 .

This theorem states that 68.27% of the outcomes will be in an interval of 1

standard deviation to each side of the mean, 95.45% will be in an interval

2 standard deviations to each side of the mean, etc. This is illustrated in

�gure 4.5.

Because most of the outcomes are in the interval � ± 2� , we call outcomes

in this interval normal outcomes. Outcomes more than 3� from the mean

are called exceptional outcomes. These outcomes only make up 1 − 0.9973 =
0.0027 = 0.27% of the entire distribution.

4.1 Approximating the binomial distribution

If a random variable is binomically distributed X ∼ b(n, p), it turns out that

we can approximate the distribution of X by a normal distribution with

the same mean and standard deviation as the binomial distribution.

The approximation is very good when �2 = np(1 − p) ≥ 10, and it gets

better, the larger this quantity gets.[1]

� − 3� � − 2� � − � � � + � � + 2� � + 3�

99.73%

95.45%

68.27%

Figure 4.5: For a normally distributed ran-

dom variabel, the probability that X is in a

symmetric interval of 1 standard deviation

to each side of the mean is a �xed number.

So is the probability of an interval of 2 stan-

dard deviations to each side of the mean,

etc.
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Example 4.5 If a random variable X ∼ b(10, 0.4) is binomially distributed,

its mean and standard deviation are

� = n ⋅ p = 10 ⋅ 0.4 = 4

� =
√
np(1 − p) =

√
10 ⋅ 0.4 ⋅ 0.6 =

√
2.4 = 1.55 .

Here, �2 is 2.4 which is somewhat less than 10, i.e. we do not expect

the normal distribution to be a very good approximation of this binomial

distribution.

Figure 4.5 shows a bar chart of the probability distribution of X and the

graph of the PDF af the normal distribution with mean 4 and standard

deviation 1.55, and as we see the approximation is not that good.

0 5 10

Figure 4.6: The distribution b(10, 0.4) ap-

proximated by a normal distribution.

However, if we look at a random variable Y which is binomially distributed

Y ∼ b(50, 0.4), we see a better approximation. Here, the mean and the

standard deviation are

� = 50 ⋅ 0.4 = 20

� =
√
50 ⋅ 0.4 ⋅ 0.6 =

√
12 = 3.46 ,

and �2 is 12, so a little more than 10. If we draw a bar chart of the dis-

tribution of Y and the PDF of the normal distribution with mean 20 and

standard deviation 3.46, we get �gure 4.5.

10 20 30

Figure 4.7: The distribution b(50, 0.4) ap-

proximated by a normal distribution.

Here, we see a clear similarity between the graph and the bar chart, i.e. this

normal distribution is a good approximation of the binomial distribution.

4.2 Samples

Because we can use the normal distribution to approximate the normal

distribution, we can also use it to determine a con�dence interval for the

probability of success p in a binomial distribution. To determine this

interval we �rst need an estimate of the parameter p.

Example 4.6 A company wants to investigate how many percent of con-

sumers know about a new product. They conduct a survey and ask 1142

representatively chosen people whether they have heard of this new prod-

uct. Out of the 1142, 715 have heard of the new product.

Based on these numbers, they estimate that

p̂ =
715
1142

= 0.626 = 62.6%

of consumers have heard of the new product.

How sure can we be of this number? If we assume that p̂ is a good estimate

of the true parameter p, then the number of people who have heard about

the product is binomially distributed with number of trials n = 1142 and

probability of success p̂ = 0.626. The mean of this binomial distribution is

� = np̂ ,
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and the standard deviation is

� =
√
np̂(1 − p̂) .

Now, if we approximate this binomial distribution by a normal distribution,

we �nd that 95.45% of the distribution is in the interval

� ± 2� = np̂ ± 2 ⋅
√
np̂(1 − p̂) .

Because we are more interested in a percentage than in the total number,

we divide this number by n and get the interval

p̂ ± 2 ⋅

√
p̂(1 − p̂)

n
.

We can now say that with a probability of 95.45% the true value of the

probability of success p will be in this interval.

Theorem 4.7

In a sample of n elements and ns successes, the 95% con�dence interval

is given by

[
p̂ − 2 ⋅

√
p̂(1 − p̂)

n
; p̂ + 2 ⋅

√
p̂(1 − p̂)

n ]
,

where p̂ = ns
n .

The interval given by the above formula is actually the 95.45% con�dence in-

terval for p. If we want exactly 95%, the 2 in the formula must be exchanged

by 1.96.[3]

Example 4.8 In the previous example, we estimated the probability of

success as p̂ = 0.626, i.e.

2 ⋅

√
p̂(1 − p̂)

n
= 2 ⋅

√
0.626 ⋅ (1 − 0.626)

1142
= 0.029 .

So, there is a 95% probability that the parameter p is in the interval

0.629 ± 0.029

which means that with a probability of 95% between 59.7% and 65.5% of

consumers have heard of the new product.

4.3 The standard normal distribution

If we do calculations involving the normal distribution, we would normally

use a CAS. Before these were invented, tables of function values were used.

Because it is not possible to make tables for each possible value of the mean

and standard deviation, tables were made of the so-called standard normal
distribution. It turns out that this is su�cient because the PDF and the

CDF of any normal distribution can be expressed via the standard normal

distribution.

The standard normal distribution is de�ned in the following way:
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De�nition 4.9

The normal distribution with mean � = 0 and stanard deviation � = 1
is called the standard normal distribution. The probability density

function of this distribution is

�(x) =
1√
2π

⋅ e−
1
2 x

2
.

The cumulative distribution function is

Φ(x) = ∫
x

−∞
�(t) dt .

The next few theorems show the connection between the PDF and the CDF

of an arbitrary normal distribution and the corresponding functions for

the standard normal distribution.

Theorem 4.10

For the probability density function f (x) of the normal distribution

with mean � and standard deviation � , we have

f (x) =
1
�
⋅ � (

x − �
� ) ,

where �(x) is the probability density function of the standard normal

distribution.

Proof
We prove the theorem by calculating

1
� ⋅ � (

x−�
� ):

1
�
⋅ � (

x − �
� ) =

1
�
⋅
1√
2π

⋅ e−
1
2 ( x−�� )

2

=
1

�
√
2π
e−

(x−�)2

2�2 = f (x) . ■

However, the tabulated function was not the PDF but the CDF, because this

can be used for direct calculations of probabilities. We have the following

theorem:

Theorem 4.11

For the cumulative distribution function F (x) and the corresponding

function Φ(x) for the standard normal distribution, we have

F (x) = Φ(
x − �
� ) .

Proof
The cumulative distribution function of the normal distribution with mean

� and standard deviation � is, according to theorem 4.10, equal to

F (x) = ∫
x

−∞
f (t) dt = ∫

x

−∞

1
�
⋅ � (

t − �
� ) dt . (4.1)
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We now perform the substitution u = t−�
� . Then du = 1

� ⋅ dx , and the

expression in (4.1) becomes

∫

x−�
�

−∞
�(u) du = Φ(

x − �
� ) .

So,

F (x) = Φ(
x − �
� ) . ■

We do not need these theorems to �nd probabilities for a given normal dis-

tribution. But as it turns out, the standard normal distribution is quite useful

when we want to investigate if a given data set is normally distributed.

4.4 Normally distributed data

In this section, we will show how to construct a so-called quantile plot or

QQ-plot which is a graph that is used to determine whether a set of data is

normally distributed.

Example 4.12 We want to know whether the following numbers are nor-

mally distributed (the numbers show the weights of 30 sacks of carrots

which should each weigh 25 kg):

24.8 25.4 25.0 25.4 24.0 24.4

24.5 24.5 24.8 24.9 24.9 25.0

24.7 24.3 24.7 24.8 25.0 25.1

25.1 24.5 24.3 25.0 25.3 25.1

24.5 24.7 25.3 24.6 24.5 24.8

If we calculate the mean and the sample standard deviation of this data set,

we get

x = 24.8 and s = 0.35 .

What we want to know is whether this data set corresponds to a normal

distribution with this mean and standard deviation. First we sort the 30

numbers and number them (see table 4.8).

Table 4.8: The weight of 30 sacks of carrots,

sorted and numbered.

Vægt. x i z = Φ−1 ( i−0.5n )
24.0 1 −2.13
24.3 2 −1.64
24.3 3 −1.38
24.4 4 −1.19

⋮ ⋮ ⋮

25.3 28 1.38

25.4 29 1.64

25.4 30 2.13
The idea behind the quantile plot is to compare the cumulative relative

frequencies to the cumulative relative frequencies of the standard normal

distribution. If the data is normally distributed, the cumulative relative fre-

quencies will be the function values of a CDF F (x) of a normal distribution

with mean x and standard deviation s where

F (x) = Φ(
x − x
s ) ,

which we can rewrite as
3 3

Here, Φ−1 is the inverse function of the CDF

of the standard normal distribution. This

function can be found in most CASs.Φ−1(F ) =
x − x
s

.

This means that Φ−1(F ) is a linear function of x .
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Here, F is the cumulative relative frequency. In this example, the cumulative

relative frequencies F = i
30 where i is measurement number i. So, the

�rst measurement has the cumulative relative frequency
1
30 , and the last

measurement has the cumulative relative frequency
30
30 = 1. This is a

problem because the function Φ−1(F ) is not de�ned for F = 1.4 So, in order
4
This is because the CDF of the normal dis-

tribution will never have the function value

1, but only approach 1 as x → ∞.

to include the last point, we use the number
i−0,5
n (where n is the number

of measurements, i.e. here n = 30) instead of the actual cumulative relative

frequencies[2] and calculate the number z,

z = Φ−1(
i − 0, 5
n ) .

Next, we graph z as a function of x , see �gure 4.9.24 24.5 25 25.5

−3

−2

−1

1

2

x

z

Figure 4.9: Quartile plot of the weight of

carrots.

If the data set is approximately normally distributed, the points have to be

approximately on the straight line z = x−x
s which in this case is

z =
x − 24.9
0.35

.

As we can see, the points are very close to this straight line, which means

that this data set is normally distributed.

This is a brief summary of the method:

1. Calculate the mean x and the sample standard deviation s.

2. Make a table of the data set where the numbers are sorted and

numbered.

3. Add a column containing z = Φ−1 ( i−0,5n ).

4. Graph the points (x, z) in a coordinate system. x is the measurement.

5. Draw the line z = x−x
s .

6. If the data set is normally distributed, the points are approximately

on this line.

Luckily many CASs can make quantile plots so that we do not have to do

them manually like this.
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