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1What is statistics?

Statistics is an area of mathematics in which we investigate data sets to

describe them or to �nd relationships between observations. The data set

which we investigate is called the population. So, when we talk about the

population in statistics, we mean the entire set of persons, items or abstract

objects, we wish to investigate.

The quantity we measure is called a (statistical) variable. A variable in

statistics is not necessarily a number. If the population consistsof a certain

group of people (e.g. Danish citizens), we can measure their height or

weight, and this statistical variable is a number—but we can also write

down their hair colour, and this cannot be described by a number. A variabel

given by a number is called a quantitative variable, while a variable which

is not a number is called a qualitative variable.

We can use statistics to simple describe di�erent measurements to give

an overview. We call this descriptive statistics. Here, we try to present

an overview of data which at a glance might seem impossible to get an

overview of.

We can create this overview in di�erent ways, we might

• write down a table of the data set, and maybe group some of the

data,

• calculate some descriptors, i.e. numbers which describe the data set,

or

• draw diagrams which display the data.

In many circumstances, a data set will only be a sample. If we want to

make a poll of voters before an election, we cannot call every single voter

and ask them what they will vote in the upcoming election. Therefore,

we instead take a sample and ask maybe 1000 people about their political

views. Here, we need to make sure that the sample is representative, i.e.

that the results we get from the sample correspond to the entire population.

The relationship between population and sample is shown in the next two

examples (see also �gure 1.1).

Example 1.1 We want to investigate voter support for a certain political

party. In this case, the population is every registered voter. The sample

consists of those voters, we ask in the poll.

Population

Sample

Figure 1.1: The sample is a subset of the

population we want to investigate.
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6 What is statistics?

Example 1.2 A candy company wants to investigate whether their bags

of mixed candy contain equal amounts of every kind of candy. In this case,

the population is all of the bags of candy which the company produces. A

sample might be a random selection of bags from the comany warehouse.

Statistics is also sometimes used to �nd statistical models from given data. If

we measure two di�erent statistical variables, we might do e.g. a regression

analysis to search for a mathematical relationship. When we analyse data

in this way, it is important to remember that an apparent connection could

be the result of a third so-called hidden variable (see section 1.2 below).

1.1 Representativity and systematic errors

When we choose a sample, it is important that the sample is representative.
I.e. that the sample is put together in such a way that the characteristics of

the sample correspond to the characteristics of the population as a whole.

If the sample is not representative, we talk about systematic errors.

Example 1.3 A newspaper want to investigate the populations attitude

towards public digitisation. So, they post a questionnaire on their web site.

Here, the problem is that those people who oppose digitisation do not

necessarily read the newspaper on the internet. They will therefore be

underrepresented (or completely misssing) in the poll. Therefore, the

sample is not representative.

We get systematic errors when certain positions or properties are over-

or underrepresented in the sample compared with the population. An

often cited example of a systematic error in sample selection is the Literary

Digest’s prediction of the winner of the American presidential election in

1936:

Example 1.4 In 1936, the American magazine Literary Digest predicted

that Alfred Landon would win the American presidential election with 57%

of the votes. Instead, the president in o�ce, Franklin D. Roosevelt, won the

election with 62% of the votes. The magazine came to the wrong conclusion

even though they had posted questionnaires to 10 million Americans and

received 2.4 million answers.[2]

Two things went wrong in this poll. First of all, the magazine found the

addresses of the 10 million Americans via automobile clubs, telephone

books, and their own list of subscribers. In 1936, during the height of the

depression, Americans who owned a car of a telephone, or subscribed to a

magazine probably belonged to the wealthiest part of society.

But it was probably the second design �aw, which contributed most to

the wrong conclusion:[5] The poll was based on the answers, the maga-

zine received—so it is entirely possible that a certain voting position was

overrepresented among those who actually took their time to answer.

As the examples above show, we need to consider quite carefully how

to choose a sample. In voting polls and similar investigations, where we



1.2 Hidden variables 7

examine the position of a population on some subject, we usually choose

samples of around 1000 people. This is usually enough to ensure that the

sample mirrors the populations—but we need to be careful how we select

the sample, and we need to make sure that the position of those people

who do not want to answer a poll is still represented.

1.2 Hidden variables

We might also use statistics to look for a relationship between di�erent

quantitites. Here, we have to make sure that the the relationship we see is

actually a relationship between these two quantities and not the result of

some common cause. If this is the case, we talk about hidden variables.

Example 1.5 If we look at ice cream sales and drowning accidents, we

�nd that when ice cream sales are high, more drowning accidents happen.

We might therefore draw the conclusion that eating ice cream increases

the risk of drowning.

This is of course nonsense. If we instead look at both variables (ice cream

sales and drowning accidents) and compare them with the weather, we

quickly determine that on warm days, ice cream sales increase and so does

the number of people going to the beach—which in turn increases the

number of drowning accidents.

In this case, it is the heat which is the hidden variable on which the others

depend.





2Ungrouped statistics

In ungrouped statistics, we describe separate data. As an example, we

might consider asking a high school class of 25 students how many times

they have been to the cinema during the last year. The answers might look

like table 2.1.

Table 2.1: Visits to the cinema (unsorted).

1 0 3 2 4

2 3 4 6 5

4 2 3 4 0

4 4 5 3 3

1 0 0 4 5

It is hard to get an overview of these numbers. The �rst thing we might

do, therefore, is to sort them. This is done in table 2.2.

Table 2.2: Visits to the cinema (sorted).

0 0 0 0 1

1 2 2 2 3

3 3 3 3 4

4 4 4 4 4

4 5 5 5 6

As table 2.2 shows, some of the numbers occur several times. We might

therefore construct a table of the di�erent numbers and their frequencies
(i.e. how many times they occur). The table might look like this:

Observation, x Frequency, ℎ(x) Rel. freq., f (x) Cum. fr., F (x)
0 4 16% 16%

1 2 8% 24%

2 3 12% 36%

3 5 20% 56%

4 7 28% 84%

5 3 12% 96%

6 1 4% 100%

I alt 25 100%

The �rst two columns in the table show the observation, i.e. the number

of visits to the cinema, and the frequency. The next column shows the

relative frequency, i.e. how large a fraction this number makes up of the

entire data set.

The last column shows the cumulative relative frequency which shows how

large a fraction of the data set is made up of this observations up to and
including the observation in question. The cumulative relative frequency

for 3 visits to the cinema is 56%, because 56% have been to the cinema at

most 3 times—in other words: if we count up to and including 3 visits to

the cinema, we will have counted 56% of the students.

The following de�nition provides an overview of the three quantities con-

nected to the observation:

9



10 Ungrouped statistics

De�nition 2.1

For a data set with n observations x1, x2, … , xn, we de�ne the following

quantities:

1. The frequency ℎ(x) is the number of times the observation x
occurs in the data set.

2. The relative frequency f (x) is the frequency as a fraction of the

number of observations, i.e. f (x) = ℎ(x)
n .

3. The cumulative relative frequency F (x) is the sum of the relative

frequencies up to and including the relative frequency of the

observation in question, i.e.
1

F (x) = ∑
t≤x

f (t) .
1
In this context, the symbol ∑

t≤x
means that

we take the sum of all values less than or

equal to x .

So, the frequencies in the table above show how large a fraction of the

students have been to the cinema 0 times, 1 time, etc. This is useful if we

want to compare two classes that do not have the same number of students.

We often write the relative frequency as a percentage, but we do not have

to.

The cumulative relative frequency shows how many students have been

to the cinema x times or less. The cumulative relative frequency for the

observation x = 2 is 36%. This means that 36% of the students have been

to the cinema 2 times or less. We �nd the number by adding the relative

frequencies for the observations x = 0, x = 1, and x = 2:

F (2) = f (0) + f (1) + f (2) = 16% + 8% + 12% = 36% .

2.1 Range, mode, and mean

Even though a table, such as the one above, gives an overview of a data

set, it is sometimes easier to compare data sets if we can describe them via

a few numbers, so-called descriptors.

In the table, we see that the smallest value is 0, and the largest is 6. This

allows us to calculate the so-called range which is the di�erence between

the smallest and the largest value. In this case, the range is

xmax − xmin = 6 − 0 = 6 .

The mode is the observation which occurs the largest number of times. In

our case the mode is 4—i.e. most students have been to the cinema 4 times.

A descriptor requiring a bit more calculation is the mean which tells us

what the average observation is. We �nd the mean by adding all of the

observations and dividing by the number of observations. For the numbers

in table 2.2, the mean is

x = 0 + 0 + 0 + 0 + 1 + ⋯ + 5 + 5 + 5 + 6
25 = 2.88 .



2.2 Quartiles 11

As we have already found the frequencies of all of the observations (in the

table we see, e.g., that the observation “2” occurs 5 times), we can use the

frequencies to instead write the calculation as

x = 0 ⋅ 4 + 1 ⋅ 2 + 2 ⋅ 3 + 3 ⋅ 5 + 4 ⋅ 7 + 5 ⋅ 3 + 6 ⋅ 1
25 = 2.88 .

This, of course, does not change the result.

Because we get the relative frequencies by dividing all of the frequencies

by the number of observations, we might also start out by dividing all of

the frequencies by 25 before we calculate the mean
2 2

Note that we write the relative frequencies

as decimals. E.g. the frequency of the �rst

observation is not 16, but 16%, which is the

same as 0.16.

x = 0 ⋅ 0.16 + 1 ⋅ 0.08 + 2 ⋅ 0.12 + 3 ⋅ 0.20 + 4 ⋅ 0.28 + 5 ⋅ 0.12 + 6 ⋅ 0.04 = 2.88 .

De�nition 2.2

For a data set with n observations x1, x2, … , xn ∈ X , we de�ne the

mean x as
3

x =

n
∑
i=1

xi

n =
∑
x∈X

x ⋅ ℎ(x)

n = ∑
x∈X

x ⋅ f (x) .
3
The symbol

n
∑
i=1

shows that we add every

observation from 1 to n, while ∑
x∈X

shows

that we add all of the di�erent observations.

In this context, X is the set of all possible

observations.

The mean shows the average observation. When x = 2.88 for our data

set, it means that the 25 students have been to the ciname 2.88 times on

average.

We sometimes use the symbol � for the mean of the entire population. We

might view the 25 students as a sample of the entire population of Danish

high school students (or young people between the ages of 15 and 20). In

this case, x is an estimate of the true average � of the population (and this

value is unknown).

2.2 Quartiles

The mean of a data set changes drastically if extreme values occur. E.g. if a

single student had been to the cinema 40 times, the mean would have been

a lot larger. Therefore, we sometimes describe a data set using the median,

which is the observation in the middle.

If we list all of the 25 numbers in table 2.2, the median will be the number

in the middle, i.e. number 13:
4 4

If we have an even number of observations,

the median is the average of the two middle

observations.

0, 0, 0, 0, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 6

median

So, the median of the students’ visits to the cinema is 3. This means that

half of the students have been to the cinema 3 times or less. The other half

has been to the ciname 3 times or more. It is important to note that this

number has nothing to do with the mean, and we see that the two numbers

are actually di�erent.
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Sometimes, we wish for more information than the median alone can

provide. We �nd the median by splitting the data set into two halves. We

acquire more information if we split the data set into four quarters. When

we do this, we �nd the so-called quartiles:

0, 0, 0, 0, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 6

medianlower quartile upper quartile

The lower quartile is the median of the lower half of the data. Because the

lower half of the data contains an even amount of observations (12), the

lower quartile is the average of the to middle observations (number 6 and

7). Therefore, the lower quartile is

Q1 =
1 + 2
2 = 1.5 .

The median is teh same number as before, i.e.

m = 3 .

The upper quartile is the median of the upper half. Here, we again take the

average of two numbers, i.e.

Q3 =
4 + 4
2 = 4 .

The three numbers Q1, m, and Q3 make up the quartiles, and in our case,

the quartiles for the number of visits to the cinema are (1.5, 3, 4).
We sometimes refer to the three numbers as the “�rst, second and third

quartile” instead of “upper quartile, median, and lower quartile”.

De�nition 2.3

For an ungrouped data set, we de�ne

• The medianen (or second quartile) m, as the middle observation.

If the data set has an even number of observations, the median

is the average of the two middle observations.

• The lower (or �rst) quartile Q1, as the median of the lower half

of the observations.

• The upper (or third) quartile Q3, as the median of the upper half

of the observations.

The quartiles are the numbers (Q1, m, Q3).
The set of numbers (xmin; Q1; m; Q3; xmax) containing the smallest ob-

servation, the quartiles, and the largest observation, is known as the

�ve-number summary.

Because the lower quartile in our case was 1.5, we know that a quarter

(25%) of the students went to the cinema 1.5 times or less, while three

quarters (75%) went to the cinema 1.5 times or more.
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The upper quartile Q3 = 4 shows that three quarters of the students went

to the cinema 4 times or less, while a quarter went to the cinema 4 times

or more.

If we want a complete overview of the distribution, we sometimes write

down the �ve-number summary, which (as described) contains the quartiles,

and the smallest and largest observation. In this case, the �ve-number

summary is

(0, 1.5, 3, 4, 6) ,

i.e. the smallest observation is 0, the lower quartile is 1.5, the median is 3,

the upper quartile is 4, and the largest observation is 6.

Another quantity we might calculate is the interquartile range, which is the

distance between Q1 and Q3. In our case of cinema visits, the interquartile

range is

Q3 − Q1 = 4 − 1.5 = 2.5 .

So, the sample of visits to the cinema can now be described with the

following descriptors

Descriptor Value

Minimum xmin 0

Lower quartile Q1 1.5

Median m 3

Upper quartile Q3 4

Maximum xmax 6

Mean x 2.88

Mode 4

Interquartile range Q3 − Q1 2.5

Range xmax − xmin 6

⎫⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎭

Five-number summary

2.3 Outliers

We can imagine asking 10 new students about how many times they have

been to the cinema and receiving the answers in table 2.3. This set of

observations has the mean

x = 2.8 ,

and the �ve-number summary is

(0, 2, 2.5, 4, 8) . Table 2.3: New sample of ciname visits

4 3 2 0 2

3 2 4 8 0If we look at this data set, we see that a single observation (the student

who has been to the ciname 8 times) is quite large compared to the others.

In this case, we might have a so-called outlier, i.e. an observation which is

far from the typical observation. We have the following de�nition:
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De�nition 2.4

In a set of observations, an observation x is called an outlier if it more

than 1.5 times the interquartile range below the lower quartile or above

the upper quartile.

In other words, x is an outlier when

x < Q1 − 1.5 ⋅ (Q3 − Q1) or x > Q3 + 1.5 ⋅ (Q3 − Q1) .

In the case above, the interquartile range is

Q3 − Q1 = 4 − 2 = 2 .

So, 1.5 times the interquartile range below or above the median corresponds

to

Q1 − 1.5 ⋅ (Q3 − Q1) = 2 − 1.5 ⋅ 2 = −1
Q3 + 1.5 ⋅ (Q3 − Q1) = 4 + 1.5 ⋅ 2 = 7

Because the observation 8 is larger than 7, it is an outlier. In the same way,

every observation below −1 is an outlier (but in this case we cannot get

negative numbers as observations).

2.4 Skewness

For the �rst 25 students, we found a mean of 2.88 and a median of 3. Such a

distribution where the mean is less than the median is called a left-skewed
distribution.

In the previous section, we looked at a data set (10 students) where the

mean was 2.8, and the median was 2.5. Here, the mean is larger than the

median. This distribution is therefore right-skewed.

De�nition 2.5

A data set has a

• left-skewed distribution when the mean is less than the median,

x < m,

• non-skewed distribution when the mean is equal to the median

x = m, or a

• right-skewed distribution when the mean is larger than the me-

dian, x > m.

If the distribution is left- or right-skewed, a graphical illustration of the

distribution will show this, cf. section 2.6.

2.5 Standard deviation

The standard deviation is a measurement which shows how far the obser-

vations are on average from the mean. The standard deviation is de�ned
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to be

� =

√√√√√
√

n
∑
i=1

(xi − �)2

n =

√
∑
x∈X

(x − �)2 ⋅ ℎ(x)

n . (2.1)

Our problem is that we cannot calculate this quantity based only on a

sample. If we only have a sample, we cannot determine the true mean � of

the population, but only an estimate given by the sample mean x . But if we

just use x instead of �, we will always come up with a too small estimate

of the standard deviation.

Example 2.6 At a certain high school, the mean of the boys’ height is

173 cm. Now, we take a sample to estimate this mean. We measure the

height of 3 boys to be 168, 176 and 181 cm. The mean of these height is

then

x = 168 + 176 + 181
3 = 175 .

This quantity is an estimate of the true mean, which we know in this case

to be 173 cm.

If we use the true mean to calculate the standard deviation, we get

√√√√√
√

n
∑
i=1

(xi − �)2

n =
√
(168 − 173)2 + (176 − 173)2 + (181 − 173)2

3 = 5.72 .

If we did not know the true mean, we would have to use the estimate x ,

and we would instead get

√√√√√
√

n
∑
i=1

(xi − x)2

n =
√
(168 − 175)2 + (176 − 175)2 + (181 − 175)2

3 = 5.35 .

So, we get a too small estimate for � when we use x as an estimate for �.

If we instead of dividing by 3 in the calculation above divide by 1 less (i.e.

2), we get

√√√√√
√

n
∑
i=1

(xi − x)2

n − 1 =
√
(168 − 175)2 + (176 − 175)2 + (181 − 175)2

2 = 6.56 .

This number is a too large estimate for the true standard deviation; but we

always prefer to have a too larger rather than a too small estimate.

Because we get a too small estimate when we use x instead of � in the

formula (2.1), we divide by n − 1 instead of n; in this way we get a better

estimate for the standard deviation:
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De�nition 2.7

For a sample containing the elements x1, x2, … , xn, we de�ne the sample
standard deviation to be the number

s =

√√√√√
√

n
∑
i=1

(xi − x)2

n − 1 =

√
∑
x∈X

(x − x)2 ⋅ ℎ(x)

n − 1 .

If we look again at the sample of 25 students’ visits to the cinema, we �nd

a sample standard deviation of

s =

√
∑
x∈X

(x − x)2 ⋅ ℎ(x)

n − 1

=
√
(0 − 2.88)2 ⋅ 4 + (1 − 2.88)2 ⋅ 2 + ⋯ + (6 − 2.88)2 ⋅ 6

25 − 1
= 1.76 .

For the following sample of 10 students, the sample standard deviation

is s = 2.30. The standard deviation is larger here because this data set

contains an outlier.

2.6 Diagrams

In this section, we show 3 di�erent types of diagrams, which can be used

to describe an ungrouped data set:

• A bar chart, which is useful if we want to illustrate a single data set.

• A cumulative relative frequency graph.

• A box plot, which is useful when we want to compare di�erent data

sets.

Bar chart

The sample of 25 students’ visits to the cinema yielded the following table:

Observation, x Frequency, ℎ(x) Rel. fr., f (x) Cum. rel. fr., F (x)
0 4 16% 16%

1 2 8% 24%

2 3 12% 36%

3 5 20% 56%

4 7 28% 84%

5 3 12% 96%

6 1 4% 100%

Total 25 100%



2.6 Diagrams 17

This table enables us to draw a bar chart. The x-axis represents the indi-

vidual observations, and at each observation we draw a bar, whose height

equals the frequency of the observation.

0 1 2 3 4 5 6

1
2
3
4
5
6
7

x

ℎ

Figure 2.4: The students’ visits to the cin-

ema as a bar chart using the frequencies.

In �gure 2.4, we see a bar chart where the height of the columns indicates

the frequency. Figure 2.5 shows the same bar chart, but here the heights

indicate the relative frequencies. The two charts are identical except for

the numbers on the y-axis.

0 1 2 3 4 5 6

5%

10%

15%

20%

25%

30%

x

f

Figure 2.5: The students’ visits to the cin-

ema as a bar chart using the relative fre-

quencies.

If we just want a quick description of the data set, we might just as well use

the frequencies. But if we want to compare two data sets, it is easier when

we use the relative frequencies—especially if the two data sets contain

a di�erent number of observations. This might be the case if we were

comparing two high school classes with a di�erent number of students.

The distribution of the observations in this data set is—as previously

mentioned—left-skewed. If we look at the bar chart, we see that the “weight”

of the diagram appears to be shifted towards the left. If the distribution

were right-skewed, the bars would instead have seemed to be shifted to

the right.

Cumulative relative frequency graph

A cumulative relative frequency graph is a graph of the cumulative relative

frequencies. We plot the cumulative relative frequency at the correspond-

ing observation, and the we move horizontally until we get to the next

observation, where we jump to the next cumulative relative frequency. In

this way, we get a graph that looks a bit like a set of steps—a function,

which has a such a graph is called a step function, see �gure 2.6.

1 2 3 4 5 6

20%

40%

60%

80%

100%

x

F

Figure 2.6: Cumulative relative frequency

graph of the students’ visits to the cinema.

It is possible to use cumulative relative frequency graphs to compare di�er-

ent data sets. But the box plot, which we describe below, is a much easier

tool to use for comparisons.

Box plot

A box plot is a diagram drawn using only the quartiles. When we do this,

we discard a lot of information. But in return, we get a diagram which

shows us how the numbers are distributed in way that is easy to read.

A box plot of our data set can be seen in �gure 2.7. We draw vertical lines

at the minimum value (0), the lower quartile (1.5), the median (3), the upper

quartile (4), and at the maximum value (6). Then we connect the vertical

lines as shown in the �gure.

0 1 2 3 4 5 6

Figure 2.7: Box plot of the students’ visits

to the cinema.

The box contains the middle half of the observations, while the horizontal

lines at both ends show the hours of TV watched for the lower and the

upper quarter of the class.

When we draw box plots of di�erent distributions, they are easy to compare.

If we have the �ve-number summary for the �rst data set of 25 students

(A) and the following data set of 10 students (B), we get the following table:



18 Ungrouped statistics

Data set Minimum Q1 m Q3 Maximum

A 0 1.5 3 4 6

B 0 2 2.5 4 8

If we just look at the numbers, it is hard to tell what the di�erence is

between the two classes. If, however, we draw box plots of both in the

same diagram (see �gure 2.8), they are much easier to compare.

0 2 4 6 8

A

B

Figure 2.8: Comparing visits to the cinema.

Here we see that even though B has the student with the largest number

of visits to the cinema, the lower 50% of B have been to the cinema a little

less often than the lower 50% of A. The middle half of B is closer than

the middle half of A, which means that the interquartile range is less here

(although B still has a larger sample standard deviation than A, cf. the

previous section).



3Grouped statistics

We talked about grouped statistics when the data set is grouped in intervals.

This might be the case if the data set is very large, or if we measure data

with a lot of decimals. Here, we will typically have a large number of

observations, and it makes sense to group them into intervals. The intervals

will usually be adjacent; but this is not strictly necessary. However, the

intervals must always be separate—i.e. the same observation cannot belong

to di�erent intervals.

Table 3.1 shows a sample from a company producing bags of sugar. The

table shows a the weight of 500 bags. Here, we have so many observations

that nothing would be gained by listing all of the individual weights making

up the table. Therefore, the di�erent weights are instead grouped into

intervals.

Table 3.1: Sample of the weight of bags of

sugar.

Interval (grammes) Number

800-850 11

850-900 17

900-950 53

950-1000 208

1000-1050 125

1050-1100 86

When we look at the table, we cannot immediately see whether a weight

of 850 g should be counted in the �rst or the second interval. It would

therefore be a good idea to use mathematical interval notation to describe

whether the weights bordering two intervals belong to one or the other.

We can also see that the frequencies are quite large numbers. The corre-

sponding relative frequencies are these:

Interval Frequency, ℎ Rel. freq., f Cum. rel. fr., F
[800; 850[ 11 2.2% 2.2%

[850; 900[ 17 3.4% 5.6%

[900; 950[ 53 10.6% 16.2%

[950; 1000[ 208 41.6% 57.8%

[1000; 1050[ 125 25.0% 82.8%

[1050; 1100[ 86 17.2% 100.0%

I alt 500 100.0%

3.1 Mean and standard deviation

We cannot calculate the mean and the sample standard deviation as we

did with ungrouped statistics. This is because we do not know how the

weights are distributed within the individual intervals; we do not have the

raw data for the table.

Instead, we assume that the weights are evenly distributed in the intervals.

19
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This allows us to use the midpoints of the intervals as a substitute for the

individual observations.

De�nition 3.1

For a data set grouped into n intervals, [a1; b1[ , [a2; b2[ , . . . , [an; bn[ ,

where the total number of observations is N , the mean is

x =

n
∑
i=1

mi ⋅ ℎi

N =
n
∑
i=1

mi ⋅ fi ,

and the sample standard deviation is

s =

√√√√√
√

n
∑
i=1

(mi − x)2 ⋅ ℎi

N − 1 .

ℎi is the frequency of the interval, fi is the relative frequency, and mi
is the midpoint of the interval, mi = ai+bi

2 .

To determine the mean of the above data set, we add another column of

interval midpoints:

Interval Interval midpoint, m Rel. frequency, f
[800; 850[ 825 2.2%

[850; 900[ 875 3.4%

[900; 950[ 925 10.6%

[950; 1000[ 975 41.6%

[1000; 1050[ 1025 25.0%

[1050; 1100[ 1075 17.2%

The mean is then

x = 825 ⋅ 0.022 + 875 ⋅ 0.034 + ⋯ + 1075 ⋅ 0.172 = 992.7 .

So, the average weight in the table is 992.7 g.

3.2 Diagrams

In this section, we describe three ways of illustrating grouped data:

• Histograms, which correspond to bar charts of ungrouped data.

• Cumulative relative frequency graphs which can be used to deter-

mine the quartiles.

• Box plots, which are exactly the same type of diagram as a box plot

of ungrouped data.
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Histograms

In a histogram, the relative frequencies of the intervals are drawn as

columns. For ungrouped data, we could draw a bar chart—and the height of

the bars corresponded to the relative frequencies. Here, we cannot do that,

since then wider intervals would carry more weight than narrow intervals.

Instead, we let the area of the columns correspond to their (relative) fre-

quency, see �gure 3.2.

800 900 1000 1100

5%

weight (g)

Figure 3.2: Histogram for the distribution

of weights. The area corresponds to the

frequency.

When the relative frequency is given by the area, we need to show which

area corresponds to a certain percentage. This is illustrated in the �gure,

where the rectangle in the upper right hand corner shows, which area

corresponds to 5%.

Since the area shows the relative frequency, we have no use for a y-axis,

so this is usually omitted.

If, however, all of the intervals are of equal width, we can let the height

correspond the relative frequency. A lot of CAS tools illustrate data this

way. But when we draw histogram, we need to remember that the intervals

have to be equally wide.

In our case, the intervals are actually of equal with, i.e. it is allowed to

draw the histogram as in �gure 3.3.

800 900 1000 1100

10

20

30

40

weight (g)

Rel. fr. (%)

Figure 3.3: Histogram for the distribution

of weights. The height corresponds to the

frequency.

So, for a histogram it is important to remember that

the interval’s relative frequency is the area of the correspond-

ing column—unless all of the intervals are of equal width.

Cumulative relative frequency graphs

A cumulative relative frequency graph illustrates how many percent of a

data set falls below a given value. Because the curve shows the percentage

below a given value, we use the right interval end points as x-values and

the cumulative relative frequencies as y-values.

Therefore, we add a column of interval end points to the table above:

Interval Right interval end point Cum. rel. frequency

[800; 850[ 850 2.2%

[850; 900[ 900 5.6%

[900; 950[ 950 16.2%

[950; 1000[ 1000 57.8%

[1000; 1050[ 1050 82.8%

[1050; 1100[ 1100 100.0%

After we have plotted the cumulative relative frequencies against the inter-

val end points, we connect the points with straight lines.

800 900 1000 1100

20%

40%

60%

80%

100%

weight (g)

Cum. rel. fr.

Figure 3.4: Cumulative relative frequency

graph of the weight distribution.
This curve which is also called a distribution curve shows how many

percent of the bags’ weights are below a given value. This means that we

can use the curve to answer questions such as how many percent of the
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800 900 1000 1100

20%

40%

60%

80%

100%

1044,4

weight (g)

Cum. rel. fr.

(a) The 80th percentile

800 900 1000 1100

20%

40%

60%

80%

100%

70,3%

weight (g)

Cum. rel. fr.

(b) How many bags weigh less than 1025 g?

Figure 3.5: In the �gure on the left, we �nd

the 80th percentile. The number shows that

80% of the bags weigh less than 1044.4 g.

On the right, we �nd 1025 on the x-axis.

The corresponding cumulative relative fre-

quency shows that 70.3% of the bags weigh

1025 g or less.

bags weigh less than 1025 g, or what the largest weight is for the lightest

80% of the bags. The last number is called the 80th percentile. We have the

following de�nition:

De�nition 3.2

For a data set, the pth percentile is the value in the data set for which

the cumulative relative frequency is p%.

In �gure 3.5, we �nd the 80th percentile. We �nd 80% on the y-axis and

then the corresponding value on the x-axis. This number (1044.4) shows

that 80% of the bags in the sample weigh 1044.4 g or less. Similarly, 20% of

the bags weigh 1044.4 g or more.

The �gure also shows how to �nd the percentile corresponding to a weight

of 1025 g. Here, we �nd 1025 on the x-axis and then �nd the corresponding

number on the y-axis. We �nd 70.3%, which means that 70.3% of the bags

weigh less than 1025 g, and 29.7% weigh more than 1025 g.

We also use the distribution curve to de�ne the quartiles.

De�nition 3.3

From a cumulative relative frequency graph, we �nd the quartiles

(Q1, Q2, Q3).

1. The lower quartile, Q1 is the 25th percentile.

2. The median, Q2 is the 50th percentile.

3. The upper quartile, Q3 is the 75th percentile.

Figure 3.6 shows how to �nd the quartiles. We �nd 25%, 50% and 75% on

the y-axis, and then �nd the corresponding values on the x-axis. Here, we

see that the quartiles are

(960.6, 990.6, 1034.4) .

These numbers show that

• 25% of the bags weigh 960.6 g or less,

• 50% of the bags weigh 990.6 g or less, and

• 75% of the bags weigh 1034.4 g or less.



3.2 Diagrams 23

800 900 1000 1100

10%

25%

50%

75%

100%

960.6

990.6

1034.4

vægt (g)

Cum. rel. frequency Figure 3.6: Finding the quartiles on the dis-

tribution curve for the weights.

Box plot

A box plot for a grouped data set is exactly the same as a box plot of

an ungrouped data set. The only di�erence between the two is how we

determine the quartiles. When we have this, we do exactly the same.

For the distribution of weighs above, the quartiles were

(960.6, 990.6, 1034.4) .

The lowest value was 800 and the largest was 1100. The �ve-number

summary is therefore

(800, 960.6, 990.6, 1034.4, 1100) ,

and a box plot for this distribution will look like �gure 3.7. 800 900 1000 1100
weight (g)

Figure 3.7: Box plot for the distribution of

weights.





4Linear regression

If we measure a series of corresponding values of two variables where one

is related to the other, we can sometimes set up a model of the relationship

between the two variables.

When we have a data set (x1, y1), (x2, y2), … , (xn, yn), we can try to model

the relationship with a function f , so that the graph of f is as close to

the data points as possible. Because there is always measurement errors,

such a graph will never pass through all of the data points. The di�erence

between the model’s y-value ŷi = f (xi) (also known as the estimated value)

and the measured y-value yi is called the residual. For the data point (xi , yi),
the residual is

ri = yi − ŷi .

A way to determine the function is to look for the function f which min-

imises the residuals in total. A measurement for the total di�erence is given

by the summed squares of the residuals
1 1SSE is an abbreviation of “sum of squares

of error of prediction”, the errors in this case

are the residuals.SSE = r21 + r22 + ⋯ + r2n .

We want to minimise this quantity. Because we look at the squares of the

residuals, the method is also called the method of least squares.

If the function f we are looking for, is a linear function, f (x) = ax +
b, the method will give us the straight line which best �ts the n points

(x1, y1), (x2, y2), … , (xn, yn). The residuals will then have the form

ri = yi − (axi + b) .

The sum of squares SSE of the residuals is then

SSE = r21 + r22 + ⋯ + r2n =
n
∑
i=1

(yi − axi − b)2 . (4.1)

The straight line we are looking for, is the line which minimises the sum

of squares SSE.

In this case, it turns out that we can calculate the numbers a and b in the

following way:

25
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Theorem 4.1

For the data points (x1, y1), (x2, y2), … , (xn, yn), we �nd the best straight

line y = ax + b, where

a = x ⋅ y − x ⋅ y
x2 − x2

,

and

b = y − a ⋅ x .

Here, x is the average of the x-values, y is the average of the y-values, x ⋅ y
is the average of x ⋅ y, etc.

Example 4.2 Table 4.1 shows corresponding values of the independent

variable x and the dependent variable y. To use the formulas, we need a

series of averages. These have been calculated in table 4.2.

Table 4.1: Corresponding values of x and

y.

x y
0 1

2 3

4 6

6 8

Table 4.2: x , y, x ⋅ y and x2. The bottom

row lists the averages.

x y x ⋅ y x2

0 1 0 0

2 3 6 4

4 6 24 16

6 8 48 36

x y x ⋅ y x2

3 4.5 19.5 14

We can now calculate

a = x ⋅ y − x ⋅ y
x2 − x2

= 19.5 − 3 ⋅ 4.5
14 − 32 = 1.2 .

and

b = y − a ⋅ x = 4.5 − 1.2 ⋅ 3 = 0.9 .

So, the best-�t straight line has the equation

y = 1.2x + 0.9 .

The points and the line are shown in �gure 4.3.

2 4 6

2

4

6

8

y = 1.2x + 0.9

(1)

(2)

Figure 4.3: The best-�t straight line

through the 4 points.

As the example shows, it involves a lot of work to use the formulas in

theorem 4.1 to calculate the numbers a and b—especially if we have many

data points. Fortunately, most CAS’s have the method built in, which

means we can enter the points and have the tool calculate the numbers.

Proof of the formulas

To prove the formulas in theorem 4.1, we need to know where a sum of

squares has its minimum.

Theorem 4.3

The sum of squares q(c) = ∑n
i=1(zi − c)2 has its minimum where c = z.

Proof
We have the sum of squares

q(c) =
n
∑
i=1

(zi − c)2 .

So, q(c) is a function of c given by

q(c) = (z1 − c)2 + (z2 − c)2 + ⋯ + (zn − c)2 .
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We can now rewrite the expression q(c) in the following way,
2 2

We use that

n
∑
i=1

c2 = nc2, and that

n
∑
i=1

zi =
nz.

q(c) =
n
∑
i=1

(zi − c)2

=
n
∑
i=1

(z2i + c2 − 2zic)

= nc2 − (2
n
∑
i=1

zi)c +
n
∑
i=1

z2i

= nc2 − (2nz)c +
n
∑
i=1

z2i .

Therefore q(c) is a quadratic function of c. A quadratic function y =
Ac2 + Bc + C where A > 0 has its minimum at the vertex, here c = − B

2A .

In q(c) = nc2 − (2nz)c + ∑n
i=1 z2i , the coe�cients are

A = n , B = −2nz og C =
n
∑
i=1

z2i .

So, q(c) has its minimum where

c = −−2nz2n = z . ■

Theorem 4.3 tells us that S has a minimum when
3 3

We set zi = yi −axi and c = b in the expres-

sion from the theorem.

b = y − ax = y − a ⋅ x . (4.2)

Now, we have an expression for the line’s y-axis intercept. To �nd an

expression for the slope a, we insert the expression (4.2) into the expression

for the SSE from (4.1):

SSE =
n
∑
i=1

(yi − axi − b)2

=
n
∑
i=1

(yi − axi − y + ax)2

=
n
∑
i=1

((yi − y) − a(xi − x))2

= (
n
∑
i=1

(xi − x)2)a2 − (2
n
∑
i=1

(xi − x)(yi − y)) a +
n
∑
i=1

(yi − y)2 .

This is a quadratic function of a, which has its minimum where

a = −−2∑
n
i=1(xi − x)(yi − y)
2∑n

i=1(xi − x)2
= ∑n

i=1(xi − x)(yi − y)
∑n
i=1(xi − x)2

.

Through quite a lot of calculations, we can show that this fraction can also

be written as

a = ∑n
i=1 xiyi − n ⋅ x ⋅ y
∑n
i=1 x2i − n ⋅ x2

,

which we can reduce further to arrive at the formulas in theorem 4.1.
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4.1 Coe�cient of determination

We can always use the formulas in theorem 4.1 to calculate the best-�t

straight line, but this in no way guarantees that the points are on a line

to any degree of accuracy. Therefore, we de�ne the so-called coe�cient of
determination which measures how well the calculated line �ts the data

points.

If there is no relationship between the x- and y-values of the data points,

we would expect the y-values to vary randomly around the average y
independently of the x-value. We can calculate the sum of the squares of

the di�erences between the y-values and the expected y-value (in this case

y); this is

Syy =
n
∑
i=1

(yi − y)2 .

Syy is the sum of the squares of the errors when we assume that there is

no relationship between x and y .

But actually, we do expect a relationship between x and y , and in this case

the errors are described by the sum of squares SSE which is the sum of the

squares of the errors when we model the given data with a linear function.

This will be less than Syy . The coe�cient of determination is then de�ned

to be the number

R2 = Syy − SSE
Syy

.

So, the number R2 shows how many percent SSE is less than Syy . If SSE is

very small compared to Syy , this number will be close to 1, while it will be

close to 0 when SSE is almost as large as Syy , i.e. when the linear function

is not much closer to the points than a vertical line through the average of

the y-values.

The coe�cient of determination is a good measure for how well the line

�ts the given data points, but it cannot stand on its own. When we perform

linear regression to �nd the best-�t straight line, we can do so without

drawing the graph. So, we can have a CAS calculate the equation of the line

and the coe�cient of determination R2. We can the use the coe�cient of

determination to decide whether it makes sense to model the relationship

with a straight line.

But it is always a good idea to draw the graph because, as it turns out, we

can get the same straight line and coe�cient of determination from very

di�erent data sets.

In 1973, the statistician Francis Anscombe described in an article four dif-

ferent data sets which all had the same regression equation and coe�cient

of determination, but which were very di�erent.[1] The four data sets are

shown in table 4.4.

If we plot each of the four data sets in a coordinate system, we get diagrams

in �gure 4.5. Here we can clearly see that the four data sets are distributed

very di�erently. The �rst data set looks like it could be modelled with a
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x y
4 4.26

5 5.68

6 7.24

7 4.82

8 6.95

9 8.81

10 8.04

11 8.33

12 10.84

13 7.58

14 9.96

x y
4 3.1

5 4.74

6 6.13

7 7.26

8 8.14

9 8.77

10 9.14

11 9.26

12 9.13

13 8.74

14 8.1

x y
4 5.39

5 5.73

6 6.08

7 6.42

8 6.77

9 7.11

10 7.46

11 7.81

12 8.15

13 12.74

14 8.84

x y
8 6.58

8 5.76

8 7.71

8 8.84

8 8.47

8 7.04

8 5.25

8 5.56

8 7.91

8 6.89

19 12.5

Table 4.4: Anscombe’s four data sets. From

[1].

straight line. The next data set (top right) shows a clear relationship—but

is is certainly not linear. The last two data sets both include an outlier.

Despite their di�erences, all of the data sets have the same regression line

and coe�cient of determination,

y = 0.50 ⋅ x + 3.00 , R2 = 0.67 .

So, the coe�cient of determination is not enough on its own to determine

whether a linear model is a “good” �t for the given data. It is therefore

a good idea to draw the graph so that we can see the distribution of the

points before we perform a linear regression.
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Figure 4.5: Anscombe’s four data sets plot-

ted in four coordinate systems.

It is clear that the distributions are very dif-

ferent.
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In the case of outliers, it also makes sense to investigate this data point

further. Could it be the result of a measurement error? And if the graph

curves in a characteristic way, we might need to use a completely di�erent

type of regression.

4.2 Residual plot and residual standard deviation

Beacuse the coe�cient of determination is not always a good measure,

it makes sense to also investigate the graph. But it can be di�cult to

determine with the naked eye whether the points are close to the graph, or

diverge from the line in some characteristic way.

We should therefore always look at the residual plot, i.e. a plot of the

residuals as a function of the corresponding x-values. These should be

small when compared to the measured y-values, and they cannot have any

form of pattern.

But it is possible to analyse the residuals further. If the data shows a linear

relationship, the errors (i.e. the residuals) will be a result of measurement

errors. We can therefore analyse the residuals statistically to determine if

this is the case.

When we perform a linear regression, the residuals are

ri = yi − axi − b ,

i.e. the average of the residuals must be

r = y − ax − b .

But b = y − ax , so r = 0. Therefore, the average of the residuals is 0.

The standard deviation of the residuals can be estimated by the so-called

residual standard deviation, which we calculate in the following way:

De�nition 4.4

If a series of data points (x1, y1), … , (xn, yn) is modelled by the straight

line y = a ⋅ x + b, the residual standard deviation is given by

s =
√

SSE
n − 2 =

√
r21 + r22 + ⋯ + r2n

n − 2 ,

where r1, r2, … , rn are the residuals.

Measurement errors are usually normally distributed. So, if use a linear

model to describe the data, then the residuals should be normally distributed

with mean 0 and standard deviation s.[3]

Table 4.6: The population of Denmark

2010–2019.[4]

Årstal Indbyggertal

2010 5 534 738

2011 5 560 628

2012 5 580 516

2013 5 602 628

2014 5 627 235

2015 5 659 715

2016 5 707 251

2017 5 748 769

2018 5 781 190

2019 5 806 081

2 4 6 8

5.6

5.7

5.8

5.9

years after 2010

Population (millions)

Figure 4.7: Regression of the population of

Denmark 2010–2019.

Example 4.5 Table 4.6 shows the population of Denmark during the years

2010–2019. If we use linear regression on this data set, we get the graph in

�gure 4.7. The regression equation is

y = 0.031x + 5.520 ,
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−0.01

0.01

(1)

(2)

(a) Residual plot.
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(b) Normal probability plot.

Figure 4.8: Residual plot and normal proba-

bility plot of the residuals of the population

of Denmark 2010–2019.

where x is the number of years after 2010, and y is the population in

millions.

The coe�cient of determination and the residual standard deviation are

R2 = 0.985 and s = 0.013 .

The coe�cient of determination shows that the points are quite close to

the straight line, and the residual standard deviation is small compared to

the y-values, which are all between 5 and 6.

Figure 4.8 shows the residual plot and a normal probability plot of the

residuals. From the residual plot, we might argue that there seems to be

a pattern in the residuals, but without more data this we cannot rule out

that this could be a coincidence.

The normal probability plot shows that the residuals are approximately

normally distributed because the points are close to the straight line. Using

the two parameters, the graph, and the two plots in �gure 4.8, we can now

argue that the population of Denmark can be described quite well by a

linear model in the given time period.

4.3 Con�dence intervals

If a set of data can be described well by a linear model, the calculated slope

and y-axis intercept become an estimate for the real values of the model

behind the data. In this case, we distinguish between the real values of

the two parameters a and b, and the estimated numbers â and b̂ which are

calculated from the sample.

We are usually interested in assessing how good the estimate actually is.

Therefore, we calculate a so-called con�dence interval for the slope a in

which we can be sure to �nd the slope with some given probability. We

often calculate the so-called 95% con�dence interval: If the data is a sample

which expresses a linear relationship, 95% of the slopes calculated from a

sample will be in this interval. It is therefore reasonable to claim that the

95% con�dence interval shows where the “real” slope is with a probability

of 95%.
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Because measurement errors are expected to be normally distributed, we

can deduce that the slopes we calculate from samples are normally dis-

tributed with mean a and standard deviation

�a =
�√ n

∑
i=1

(xi − x)2
= �√Sxx

,

where � is the theoretical standard deviation of the residuals. We can then

�nd the 95% con�dence interval by calculting the interval limits

a ± n0.025 ⋅
�√Sxx

.

The number n0.025 shows where we �nd the top 2.5% of the standard normal

distribution (i.e. with � = 0, � = 1). So, 95% of the normal distribution will

fall between ±n0.025 (see �gure 4.9). Because the normal distribution scales

nicely, 95% of any normal distribution will fall between the two values

� ± n0,025 ⋅ � .

−n0.025 n0.025

95%

2.5%2.5%

(1)

(2)

Figure 4.9: For the standard normal distri-

bution, 95% of the distribution falls between

±n0.025.

95% of the possible samples will yield an estimated value â which falls in

the interval

a ± 1, 96 ⋅ �√Sxx
.

There is just one problem. We know neither the theoretical residual stan-

dard deviation � nor the true value of a, but only the estimated residual

standard deviation s and the estimated slope â. And when we use the

estimated standard deviation, the estimated â-values are no longer nor-

mally distributed—they follow instead the so-called t-distribution.
4

The
4
The t-distribution is the distribution we get

when we investigate normally distributed

data by using a mean and a standard devia-

tion estimated from a sample.[6]

estimated standard deviation of a is then[7]

sa =
s√ n

∑
i=1

(xi − x)2
= s√Sxx

,

where s is the estimated residual standard deviation.

As previously mentioned, the quantity â is t-distributed. The t-distribution

describes the distribution of a normally distributed parameter estimated

from a sample. Because we only know a sample and not the entire set of

underlying data, we get a distribution of frequencies which looks like the

normal distribution, but with “thicker tails” because a larger percentage

of measured values will be further from the mean when the mean and the

standard deviation are only estimates.

Furthermore, the t-distribution depends on the size of the sample—the so-

called degrees of freedom. As you can see in �gure 4.10, the t-distribution

looks more and more like the normal distribution, the more degrees of

freedom it has, i.e. how larger the sample is. The reason for this is that the

more data we have, the closer the estimated mean and standard deviation

will be to the true values—and the estimated distribution will then be closer

to the theoretical normal distribution.

−2 −1 1 2
(1)

(2)

Figure 4.10: The standard normal distribu-

tion (dashed) and the t-distribution with 1,

2 and 5 degrees of freedom.
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If we have n data points, we can calculate a 95% con�dence interval for the

parameter a which is

â ± t0.025 ⋅
s√Sxx

.

where t0.025 corresponds to the number n0.025, but for the t-distribution

with n − 2 degrees of freedom.

In the same way, we can determine a con�dence interval for the parameter

b (the line’s y-axis intercept). Here, we �nd the con�dence interval[7]

b̂ ± t0.025 ⋅
s√n ,

where s is the estimated residual standard deviation, and n is the number

of data points.

All of the arguments above can be put together to form this theorem:

Theorem 4.6

If we perform linear regression on a data set, we can determine the

(1 − �) con�dence intervals for the parameters a and b in the linear

model y = ax + b as

â ± t�/2 ⋅
s√Sxx

,

and

b̂ ± t�/2 ⋅
s√n .

The number � in the theorem is 5% (i.e. 0.05) for a 95% con�dence interval,

1% (i.e. 0.01) for a 99% con�dence interval, etc.

4.4 Other types of regression

The relationship between x and y in a data set (x1, y1), … , (xn, yn) is not nec-

essarily linear. E.g. it could also be a power, an exponential or a polynomial

relationship.

Power and exponential regression are done by most CAS’s by transforming

the data set and then performing linear regression on the transformed data.

E.g. if the relationship between x and y is exponential, we have

y = b ⋅ ax
log(y) = log(b ⋅ ax )
log(y) = log(a) ⋅ x + log(b) ,

i.e. when the relationship between x and y is exponential, the relationship

between x and log(y) is linear. We can therefore perform linear regression

on the data set (x1, log(y1)), … , (xn, log(yn)). Then we �nd log(a) and log(b)
which we can transform back into a and b.

In a similar way, we can transform a power relation into a linear relation

by taking a logarithm to both the x- and the y-values in the data set.
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The point here is this: If we perform regression on transformed data, R2
will also be calculated from transformed data. This means that we have

to be extra careful when we interpret the results, and therefore it is very

important that we also look at the graph and the residual plot in these

cases.
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